Etiologia da fadiga muscular e ação dos alcaloides

  • Jardel Schlickmann Programa de Pós-Graduação Lato-Sensu da Universidade Gama Filho - Bases Nutricionais da Atividade Fí­sica: Nutrição Esportiva
  • Fabrizio Caputo Programa de Pós-Graduação Lato-Sensu da Universidade Gama Filho - Bases Nutricionais da Atividade Fí­sica: Nutrição Esportiva
Palavras-chave: Fadiga muscular, Exercício físico, Alcaloides

Resumo

Ao longo dos anos foram muitas as definições e conceitos atribuídos ao fenômeno da fadiga muscular (FM), que pode representar um fenômeno multifatorial caracterizado pela incapacidade de manter determinada intensidade de trabalho prescrita ou um declínio na capacidade física a qual é recuperada após um determinado tempo. De certa forma os processos causadores da fadiga originados no córtex e na medula espinhal são definidos como centrais, quanto os processos nos nervos periféricos, na junção neuromuscular e nos músculos, são definidos como periféricos. Uma ampla quantidade de modelos experimentais, desde estudos in vitro, como estudos in vivo, tem sido empregada para compreender a etiologia da FM. Alguns mecanismos foram propostos como possíveis causadores da fadiga central, estes incluem: 1) o aumento da concentração de metabólitos durante a atividade muscular intensa, como os H+, K+, bradicinina, fosfato inorgânico, prostaglandinas; 2) uma redução dos níveis de glicose plasmática; 3) aumento da concentração de triptofano plasmático e do 5-hidroxitriptofano (5-HT); 4) mudanças termodinâmicas e na concentração de neurotransmissores. Podemos citar como algunsdos prováveis fatores responsáveis pela fadiga periférica: 1) acúmulo de potássio extracelular; 2) produção de H+; 3) acúmulo de fosfato inorgânico; 4) formação de radicais livres. O NaHCO3 está entre os alcaloides mais estudados nas modalidades esportivas com demanda energética de alta intensidade a alta produção de H+. Estudos têm mostrado aumento no desempenho quando administramos alcaloides, que apesar da acidez favorecer alguns mecanismos específicos a nível celular, a manutenção do pH ainda é um fator crucial na magnitude da fadiga.

Referências

-Allen, D.G.; Lamb, G.D.; Westerblad, H. Skeletal muscle fatigue: cellular mechanisms. Physiological Reviews. Vol. 88. 2008. p. 287-332.

-Amann, M.; Runnels, S.; Morgan, D.E.; Trinity, J.D.; Fjeldstad, A.S.; Wray, D.W.; Reese, V.R.; Richardson, R.S. On the contribution of group III and IV muscle afferents to the circulatory response to rhythmic exercise in humans. Journal of Physiology. Vol. 589. 2011. p. 3855-3866.

-Ascensão, A.; Magalhães, J.; Oliveira, J.; Duarte, J.; Soares J. Fisiologia da fadiga muscular. Delimitação conceptual, modelos de estudo emecanismos de fadiga de origem central e periférica. Revista Portuguesa de Ciências do Desporto. Vol. 3. 2003. p. 108-123.

-Bangsbo, J.; Madsen, K.; Kiens, B.; Richter, E.A. Effect of muscle acidity on muscle metabolism and fatigue during intense exercise in man. Journal of Physiology. Vol. 495. 1996. p. 587-596.

-Barry, B. K.; Enoka, R. M. The neurobiology of muscle fatigue: 15 years later. Integrative and Comparative Biology. Vol. 47. 2007. p. 465-473.

-Bigland-Ritchie, B.; Dawson, N.J.; Johansson, R.S.; Lippold, O.C.J. Reflex origin for the slowing of motoneurone firing rates in fatigue of human voluntary contractions. Journal of Physiology. Vol. 379. 1986. p. 451-459.

-Bigland-Ritchie, B.; Kukulka, C.G.; Lippold, O.C.; Woods, J.J. The absence of neuromuscular transmission failure in sustained maximal voluntary contractions. Journal of Physiology. Vol. 330. 1982. p. 265-278.

-Bishop, D.; Edge, J.; Davis, C.; Goodman, C. Induced metabolic alkalosis affects muscle metabolism and repeated-sprintability. Medicine and Science in Sports & Exercise. Vol. 36. 2004. p. 807-813.

-Bishop, D.J.; Thomas, C.; Moore-Morris T.; Tonkonogi, M.; Sahlin, K.; Mercier, J. Sodium bicarbonate ingestion prior to training improves mitochondrial adaptations in rats.American Journal of Physiology and Endocrinology Metabolism. Vol. 299. 2010. p. 225-233.

-Borg, G. Perceived exertion: a note on history and methods. Medicine and Science in Sports & Exercise. Vol. 5. 1973. p. 90-93.

-Broch-Lips, M.; Overgaard, K.; Praetorius, H.A.; Nielsen, O.B. Effects of extracellular HCO3 on fatigue, pHi, and K efflux in rat skeletal muscles. Journal of Applied Physiology. Vol. 103. 2007. p. 494-503.

-Cady, E.B.; Jones, D.A.; Lynn, J.; Newham, D.J. Changes in force and intracellular metabolites during fatigue of human skeletal muscle. Journal of Physiology. Vol. 418. 1989. p.311–325.

-Cairns, S.P. Lactic acid and exercise performance: culprit or friend? Vol. 36. 2006. p. 279-291.

-Caremani, M.; Dantzig, J.; Goldman, Y.E.; Lombardi, V.; Linari, M. Effect of inorganic phosphate on the force and number of myosin cross-bridges during the isometric contraction of permeabilized muscle fibers from rabbit psoas. Biophysical Journal. Vol. 95. 2008. p. 5798-5808.

-Chase, P.B.; Kushmerick, M.J. Effects of pH on contraction of rabbit fast and slow skeletal muscle fibers. Biophysical Journal. Vol. 53. 1988 p. 935-946.

-Clausen, T.; Nielsen, O.B. Potassium, Na+,K+-pumps and fatigue in rat muscle. Journal of Physiology. Vol. 584. 2007. p. 295-304.

-Cresswell, A.G.; Thorstensson, A. Central fatigue during a long-lasting submaximal contraction of the triceps surae. Experimental Brain Research. v. 108. 1996. p. 305-314.

-Di Giulio, C.; Daniele, F.; Tipton T.M. Angelo Mosso and muscular fatigue: 116 years after the first congress of physiologists: IUPS commemoration. Advanced in Physiology Education. Vol. 30. 2006. p. 51-57.

-Dousset, E.; Decherchi, P.; Grelot, L.; Jammes, Y. Effects of chronic hypoxemia on the afferent nerve activities from skeletal muscle. American Journal Respiration Critical Care Medicine. Vol. 164. 2001. p. 1476–1480.

-Edwards, R.H. Human muscle function and fatigue. Ciba Foundation Symposium. Vol. 82. 1981. p. 1-18.

-Enoka, R.M.; Stuart, D.G. Neurobiology of muscle fatigue. Journal of Applied Physiology. Vol. 72. 1992. p.1631-1648.

-Fabiato, A.; Fabiato, F. Effects of pH on the myofilaments and the sarcoplasmic reticulum of skinned cells from cardiac and skeletal muscles. Journal of Physiology. Vol. 276. 1978. p. 233-255.

-Galloway, S.D.; Maughan, R.J. The effects of induced alkalosis on themetabolic response to prolonged exercise in humans. European Journal of Applied Physiology. Vol. 74. 1996. p. 384-389.

-Gandevia, S. C.; Enoka, R. M.; Mc Comas, A. J.; Stuart, D. G.; Thomas, C. K. Fatigue: Neural and Muscular Mechanisms. New York: Plenum Press, 1995.

-Gandevia, S.C. Spinal and supraspinal factors in human muscle fatigue. Physiological Reviews. Vol.81. 2001. p. 1725-1789.

-Gandevia, S.C.; Allen, G.M.; Butler, J.E.; Taylor, J.L. Supraspinal factors in humanmuscle fatigue: evidence for suboptimal output from the motor cortex. Journal of Physiology. Vol. 490. 1996. p. 529-536.

-Garland, S.J.; Kaufman, M.P. Role of muscle afferents in the inhibition of motoneurons during fatigue. Advanced Experimental Medicine Biology. Vol. 384. 995. p. 271-278.

-Ge, W.; Khalsa, P.S. Encoding of compressive stress during indentation by group III and IV muscle mechano-nociceptors in rat gracilis muscle. Journal of Neurophysiology. Vol.89. 2003. p. 785-792.

-Goodwin, G.M.; McCloskey, D.I.; Mitchell, J.H. Cardiovascular and respiratory responses to changes in central command during isometric exercise at constant muscle tension. Journal of Physiology. Vol. 226. 1972. p.173–190.

-Green, H. Metabolic determinants of activity induced muscular fatigue. Exercise Metabolism. Human Kinetics. 1995. p. 221-256.

-Hawley, J.A.; Myburgh, K.H.; Noakes, T.D.; Dennis, S.C. Training techniques to improve fatigue resistance and enhance endurance performance. Journal of Sports Science. Vol. 15. 1997. p. 325-333.

-Hollidge-Horvat, M.G.; Parolin, M.L.; Wong D.; Jones, N.L.; Heigenhauser, G.J.F. Effect of induced metabolic alkalosis on human skeletal muscle metabolism during exercise. American Journal of Physiology -Endocrinology Metabolism. Vol. 278. 2000. p. 316-329.

-Juel, C. Lactate-proton co-transport in skeletal muscle. Physiological Reviews. Vol. 77. 1997. p. 321-358.

-Juel, C.; Halestrap, A.P. Lactate transport in skeletal muscle—role and regulation of the monocarboxylate transporter. Journal of Physiology. Vol. 517. 1999. p. 633–642.

-Juel, C.; Pilegaard, H.; Nilesen, J.J.; Bangsbo, J. Interstitial K(+) in human skeletal muscle during and after dynamic graded exercise determined by microdialysis. American Journal of Physiology. Vol. 278. 2000. p. 400-406.

-Kaufman, M.; Iwamoto, G.; Longhurst, J.; Mitchell, J. Effect of capsaicin and bradykinin on afferent fibers with endings in skeletal muscle. Circulation Research. Vol. 50. 1982. p. 133-139.

-Kaufman, M.; Rybicki, K. Discharge properties of group III and IV muscle afferents: their responses to mechanical and metabolic stimuli. Circulation Research. Vol. 61. 1987. p. 60–65.

-Kaufman, M.P. Control of breathing during dynamic exercise by thin fiber muscle afferents. Journal of Applied Physiology. Vol. 109. 2010. p. 947-948.

-Keml, L.D.; Engen, R.L. Effects of NaHCO3 loading on acid-base balance, lactate concentration, and performance in racing greyhounds. Journal of Applied Physiology. Vol. 85. 1998. p.1037-1043.

-Kolkhorst, F.W.; Rezende, R.S.; Levy, S.S.; Buono, M.J. Effects ofSodium Bicarbonate on [latin capital V with dot above] O2 Kinetics during Heavy Exercise. Medicine & Science in Sports & Exercise. Vol. 36. 2004. p. 1895-1899.

-Lamb, G.D. Excitation–contraction coupling and fatigue mechanisms in skeletal muscle: studieswith mechanically skinned fibres. Journal Muscle Research and Cell Motility. Vol. 23. 2002. p. 81-91.

-Lannergren, J.; Westerblad, H. The temperature dependence of isometric contractions of single, intact fibres dissected from a mouse foot muscle. Journal of Physiology. Vol. 390. 1987. p. 285-293.

-Lavander, G.; Bird, S.R. Effect of sodium bicarbonate ingestion upon repeated sprints. British Journal Sports Medicine. Vol. 23. 1989. p. 41-45.

-Lindinger, M.I.; Heigenhauser, G.J.F.; Spriet, L.L. Effects of alkalosis on muscle ions at rest and with intense exercise. Canadian Journal Physiology Pharmacology. Vol. 68. 1990. p. 820-829.

-Lindinger, M.I.; Kowalchuk, J.M.; Heigenhauser, G.J. Applying physicochemical principles to skeletal muscle acid-base status. American Journal of Physiology. Vol. 289. 2005. p. 891–894.

-Losher, W.N.; Cresswell, A.G.; Thorstensson, A. Central fatigue during a long-lasting submaximal contraction of the triceps surae. Experimental Brain Research. Vol. 108. 1996. p. 305-314.

-Marcora, S. Perception of effort during exercise is independent of afferent feedback from skeletal muscles, heart and lungs. Journal of Applied Physiology. Vol. 106. 2009. p. 2060-2062.

-Marcora, S.M. Role of feedback from Group III and IV muscle afferents in perception of effort, muscle pain, and discomfort. Journal of Applied Physiology. Vol. 110. 2011. p. 1499.

-Martin, P.G.; Weerakkody, N.; Gandevia, S.C.; Taylor, J.L. Group III and IV muscle afferents differentially affect the motor cortex and motorneurones in humans. Journal of Physiology. Vol. 586. 2008. p. 1277-1289.

-McKenna, M.J.; Medved, I.; Goodman, C.A.; Brown, M.J.; Bjorksten, A.R.; Murphy, K.T.; Petersen, A.C.; Sostaric, S.; Gong, X. N-acetylcysteine attenuates the decline in muscle Na+K+-pump activity and delays fatigue during prolonged exercise in humans. Journal of Physiology. Vol. 576. 2006. p. 279-288.

-McMurray, R.G.; Tenan, M.S. Relationship of potassium ions and blood lactate to ventilation during exercise.Applied Physiology Nutrition Metabolism. Vol. 35. 2010. p. 691-698.

-Medved, I.; Brown, M.J.; Bjorksten, A.R.; Leppik, J.A.; Sostaric, S.; Mckenna, M.J. N-acetylcysteine infusion alters blood redox status but not time to fatigue during intense exercise in humans. Journal of Applied Physiology. Vol. 94. 2003. p. 1572-1582.

-Mense, S.; Meyer, H. Bradykinin-induced modulation of the response behaviour of different types of feline group III and IV muscle receptors. Journal of Physiology. Vol. 398. 1988. p. 49-63.

-Mitchell, J.H.; Kaufman, M.P.; Iwamoto, G.A. The exercise pressor reflex: its cardiovascular effects, afferent mechanisms, and central pathways. Annual Review Physiology. Vol. 45. 1983. p. 229-242.

-Newsholme, E.A.; Blomstrand, E. Branched-Chain Amino Acids and Central Fatigue. The Journal of Nutrition. supplement. 2006. p. 0022-3166.

-Nicol, C.; Kuitunen, S.; Kyrolainen, H.; Avela, J.; Komi, P.VOL. Effects of long-and short-term fatiguing stretch-shortening cycle exercises on reflex EMG and force of the tendon-muscle complex. European Journal of Applied Physiology. Vol. 90. 2003. p. 470-479.

-Nielsen, H.B.; Hein, L.; Svendsen, L.B.; Secher, N.H.; Quistorff, B. Bicarbonate attenuates intracellular acidosis. Acta Anaesthesiologica Scandinavica. Vol. 46. 2002. p. 579-584.

-Nielsen, O.B.; De Paoli, F.; Overgaard, K. Protective effects of lactic acid on force production in rat skeletal muscle. Journal of Physiology. Vol. 536. 2001. p. 161-166.

-Nielsen, O.B.; Overgaard, K. Point:Counterpoint authors respond to commentaries on ‘Lactic acid accumulation is an advantage/disadvantage during muscle activity’. Journal of Physiology. Vol. 101. 2006. p. 367.

-Nordlund, M.M.; Thorstensson, A.; Cresswell, A.G. Central and peripheral contributionsto fatigue in relation to level of activation during repeated maximal voluntary isometric plantar flexions. Journal of Applied Physiology. Vol. 96. 2004. p. 218-225.

-Nybo, L.; Secher, N.H. Cerebral perturbations provoked by prolonged exercise. Vol. 72. 2004. p. 223-261.

-Paintal, A. Functional analysis of group III afferent fibers of mammalian muscles. Journal of Physiology. Vol. 152. 1960. p. 250–270.

-Peart, D.J.; Mcnaughton, L.R.; Midgley, A.W.; Taylor, L.; Towlson, C.; Madden, L.A.; Vince, R.V. Pre-exercise alkalosis attenuates the heat shock protein 72 response to a single-bout of anaerobic exercise. Journal of Science and Medicine Sports. Vol. 14. 2011. p. 435-440.

-Péronnet F.; Meyer, T.; Aguilaniu, B.; Juneau, C.E.; Faude, O.; Kindermann, W. Bicarbonate infusion and pH clamp moderately reduce hyperventilation during ramp exercise in humans. Journal of Applied Physiology. Vol. 102. 2007. p. 426-428.

-Place, N.; Yamada, T.; Bruton, J.D.; Westerblad, H. Muscle fatigue: from observations in humans to underlying mechanisms studied in intact single muscle fibres. European Journal of Applied Physiology. Vol. 110. 2010. p. 1-15.

-Ranatunga, K.W. Effects of acidosis on tension development in mammalian skeletal muscle. Muscle and Nerve.Vol. 10. 1987. p. 439-445.

-Reid, M.B.; Stokic, D.S.; Koch, S.M.; Khawli, F.A.; Leis, A.A. N-acetylcysteine inhibits muscle fatigue in humans. Journal of Clinical Investigation. Vol. 94. 1994. p. 2468-2474.

-Ristow, M.; Zarse, K.; Oberbach, A.; Kliting, N.; Birringer, M.; Kiehntopf, M.; Stumvoll, M.; Kahn, C.R.; Bluher, M. Antioxidants prevent health-promoting effects of physical exercise in humans. Vol. 26. 2009. p. 106-121.

-Rotto, D.; Kaufman, M. Effect of metabolic products of muscular contraction on discharge of group III and IV afferents. Journal of Applied Physiology. Vol. 64. 1988. p. 2306-2313.

-Rybicki, K.; Kaufman, M. Stimulation of group III and IV muscle afferents reflexly decreases total pulmonary resistance in dogs. Respiration Physiology, Vol. 59, 1985. p. 185-195.

-Siegler, J.C.; Hirscher, KJ. Sodium bicarbonate ingestion and boxing performance. Journal of Strength and Conditioning Research. Vol. 24. 2010. p. 103-108.

-Sostaric, S.M.; Skinner, S.L.; Brown, M.J.; Sangkabutra, T.; Medved, I.; Medley, T.; Selig, S.E.; Fairweather, I.; Rutar, D.; Mckenna, M.J. Alkalosis increases muscle K+ release, but lowers plasma [K+] and delays fatigue during dynamic forearm exercise. Journal of Physiology. Vol. 570. 2006. p. 185-205.

-Spriet, L.L.; Lindinger, M.I.; Mckelvie, R.S.; Heigenhauser, G.J.; Jones, N.L. Muscle glycogenolysis and H+ concentration during maximal intermittent cycling. Journal of Applied Physiology. Vol. 66. 1989. p. 8-13.

-Stackhouse, S.; Dean, J.; Lee, S.; Binder-Mcload, S. Measurment of central activation failure of the quadriceps femoris in healthy adults. Muscle and Nerve. Vol. 23. 2000. p. 1706-1712.

-Stebbins, C.; Maruoka, Y.; Longhurst, J. Prostaglandins contribute to cardiovascular reflexes evoked by static muscular contraction. Circulation Research. Vol. 59. 1986. p. 645-654.

-Street, D.; Nielsen, J.J.; Bangbo, J.; Juel, C. Metabolic alkalosis reduces exercise-induced acidosis and potassium accumulation in human skeletal muscle interstitium. Journal of Physiology. Vol. 566. 2005. p.478-489.

-Sutton, J.R.; N.L. Jones.; Toewk, C.J.Effect of pH on muscle glycolysis during exercise. Clinical Science. Vol. 61. 1981. p. 331-338.

-Taylor, J.L.; Allen, G.M.; Butler,, J.E.; Gandevia, S.C. Supraspinal fatigue during intermittent maximal voluntary contractions of the human elbow flexors. Journal of Applied Physiology. Vol. 89. 2000. p. 305-313.

-Thomas, C.; Perrey S.; Lambert K.; Hugon G., Mornet D., Mercier J. Monocarboxylate transporters, blood lactate removal after supramaximal exercise, and fatigue indexes in humans. Journal of Applied Physiology. Vol. 98. 2005. p. 804-809.

-Verbitsky O.; Mizrahi J.; Levin M.; Isakov E. Effect of ingested sodium bicarbonate on muscle force, fatigue, and recovery. Journal of Applied Physiology. Vol. 83. 1997. p. 333-337.

-Vollestad, N.K.; Sejerrsted, O.M. Biochemical correlates of fatigue. A brief review. European Journal of Applied Physiology and Occupational Physiology. Vol. 57. 1988. p. 336-347.

-Westerblad, H.; Allen, D.G. The effects of intracellular injections of phosphate on intracellular calcium and force in single fibres of mouse skeletal muscle. Pfluagers Arch. Vol. 431. 1996. p. 964-970.

-Westerblad, H.; Bruton, J.D.; Lannergren, J.The effect of intracellular pH on contractile function of intact, single fibres of mouse muscle declines with increasing temperature. Journal of Physiology. Vol. 500. 1997. p. 193-204.

-Wiles, J.; Robbins, J. The effect of sodium bicarbonate ingestion on 1500-m racing time. Journal of Sports Sciences. Vol.13. 1995. p. 399-403.

-Williamson, J.W. The relevance of central command for the neural cardiovascular control of exercise. Experimental Physiology. Vol. 95. 2010. p. 1043-1048.

-Zajac, A.; Cholewa , J.; Poprzecki, S.; Waskiewicz, Z.; Langfort, J. Effects of sodium bicarbonate ingestion on swim performance in youth athletes. Journal of Sports Science and Medicine. Vol. 8. 2009. p. 45-50.

Publicado
2012-04-18
Como Citar
Schlickmann, J., & Caputo, F. (2012). Etiologia da fadiga muscular e ação dos alcaloides. RBNE - Revista Brasileira De Nutrição Esportiva, 6(31). Recuperado de https://www.rbne.com.br/index.php/rbne/article/view/190
Seção
Artigos Científicos - Original