Effects of omega 3 supplementation on irisin release by skeletal muscle
Abstract
Introduction: Skeletal muscle tissue is seen as an endocrine organ, as with intense physical exercise, muscle contractions occur and thus release substances that promote hormonal effects, one of which is known as irisin, which can modulate white adipose tissue into brown adipose tissue, which increases thermogenesis. Omega 3 has been studied as a strategy for greater release of irisin to promote an increase in thermogenesis, especially in obese people. Materials and Methods: A narrative review in which articles were searched in four bibliographic research bases, namely PubMed, Scielo, Lilacs and also master's and doctoral dissertations in federal university directories. Articles and works published between 2010 and 2020 were selected, written in English, Portuguese and Spanish. Conclusion: It was possible to conclude that the administration of the essential oil omega 3, brings several benefits for the health of the population, mainly in treatment for the population with obesity. With regard to irisin, studies with mice have shown beneficial effects in omega 3 supplementation, increasing serum irisin. However, controlled studies in humans are still needed for better analysis.
References
-Abedpoor, N.; Taghian, F.; Ghaedi, K.; Niktab, I.; Safaeinejad, Z.; Rabiee, F.; Tanhaei, S.; Nasr-Esfahani, M. H. PPARγ/Pgc-1α-Fndc5 pathway upregulation in gastrocnemius and heart muscle of exercised, branched chain amino acid diet fed mice. Nutrition & Metabolism. Vol. 15. Num. 59. 2018. p. 1-15.
-Ansari, S.; Djalali, M.; Honarvar, N. M.; Mazaherioun, M.; Zarei, M.; Agh, F.; Gholampour, Z.; Javanbakht, M. H. The Effect of n-3 Polyunsaturated Fatty Acids Supplementation on Serum Irisin in Patients with Type 2 Diabetes: A Randomized, Double-Blind, Placebo-Controlled Trial. International Journal of Endocrinology and Metabolism. Vol. 15. Num. 1. 2017. p. 1-6.
-Ateş, I.; Altay, M.; Topçuoğlu, C.; Yılmaz, F. M. Circulating levels of irisin is elevated in hypothyroidism, a case-control study. Archives of Endocrinology and Metabolism. Vol. 60. Num. 2. 2016. p. 95-100.
-Baldelli, S.; Barbato, D. L.; Tatulli, G.; Aquilano, K.; Ciriolo, M. R. The role of nNOS and PGC-1a in skeletal muscle cells. Journal of Cell Science. Vol. 127. Num. 22. 2014. p. 4813-4820.
-Barreto, P. P. A. F. A. P. Alterações no metabolismo energético provocadas pela super expressão da proteína desacopladora mitocondrial 1 (UCP1) em tabaco induzem biogênese mitocondrial e resposta global a estresses. Tese de Doutorado. Universidade Estadual de Campinas. São Paulo. 2014.
-Bhullar, A. S.; Putman, C. T.; Mazurak, V. C. Potential Role of Omega-3 Fatty Acids on the Myogenic Program of Satellite Cells. Nutrition and Metabolic Insights. Vol. 9. 2016. p. 1-10.
-Bonfim, L. H. M. Efeito da expressão da enzima piruvato carboxilase no metabolismo, na função mitocondrial e na resposta à insulina em células musculares. Dissertação de Mestrado. Universidade Estadual de Campinas. São Paulo. 2017.
-Bostrom, P.; Wu, J.; Jedrychowski, M. P.; Korde, A.; Ye, L.; Lo, J. C.; Rasbach, K. A.; Bostrom, E. A.; Choi, J. H.; Long, J. Z; Kajimura, S.; Zingaretti, M. C.; Vind, B. F.; Tu, H.; Cinti, S.; Højlund, K.; Gygi, S. P.; Spiegelman, B. M. A PGC1-a-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature. Vol. 481. Num. 7382. 2012. p. 463-469.
-Brogin Junior, W. Efeito de um agonista dos receptores ativados por proliferadores de peroxissomo gama (PPARγ) sobre os efeitos do ácido linoleico conjugado (cla, trans-10, cis-12 e cis-9, trans11) na transcrição de genes lipogênicos em explantes mamários de ovelhas lactantes. Dissertação de Mestrado. Universidade do Estado de Santa Catarina. Santa Catarina. 2017.
-Capistrano Junior, V. L. M.; Gurgel, D. C. Utilização do ômega-3 na síntese proteica e recuperação muscular. Revista Brasileira de Nutrição Funcional. Vol. 34. Num. 69. 2017. p. 26-37.
-Carvalho, L. P. C.; Gomes, J. L. B. Comentário sobre: Bente Klarlund Peddersen, Atividade física e interação-ação músculo-cérebro. Revista Brasileira de Fisiologia do Exercício. Vol. 19. Num. 2. 2020. p. 172-177.
-Castillo-Quan, J. I. From white to brown fat through the PGC-1α -dependent myokine irisin: implications for diabetes and obesity. Disease Models & Mechanisms. Vol. 5. Num. 3. 2012. p. 293-295.
-Celi, F. S. Human Brown Adipose Tissue Plasticity: Hormonal and Environmental Manipulation. In: Spiegelman, B. Hormones, Metabolism and the Benefits of Exercise. Research and Perspectives in Endocrine Interactions. Springer. 2017. p. 1-11.
-Colaianni, G.; Cinti, S.; Colucci, S.; Grano, M. Irisin and musculoskeletal health. Annals of the New York Academy of Sciences. Vol. 1402. Num. 1. 2017. p. 5-9.
-Dangardt, F.; Chen, Y.; Gronowitz, E.; Dahlgren, J.; Friberg, P.; Strandvik, B. High Physiological Omega-3 Fatty Acid Supplementation Affects Muscle Fatty Acid Composition and Glucose and Insulin Homeostasis in Obese Adolescents. Journal of Nutrition and Metabolism. Vol. 2012. 2012. p. 1-9.
-Esgalhado, M. G. B. M.; Stockler-Pinto, M. B.; Cardozo, L. F. M. F.; Barboza, J. E.; Mafra, D. Does high intensity exercise affects irisin plasma levels in hemodialysis patients? A pilot study. Jornal Brasileiro de Nefrologia Vol. 40. Num. 1. 2018. p. 53-58.
-Fappi, A.; Neves, J. C.; Kawasaki, K. A.; Bacelar, L.; Sanches, L. N.; Silva, F. S.; Larina-Neto, R.; Chadi, G.; Zanoteli, E. Omega-3 multiple effects increasing glucocorticoid-induced muscle atrophy: autophagic, AMPK and UPS mechanisms. Physiological Reports. Vol. 7. Num. 1. 2019. p. 1-18.
-Fernández-Galilea, M.; Félix-Soriano, E.; Colón-Mesa, I.; Escoté, X.; Moreno-Aliaga, MJ. Omega-3 fatty acids as regulators of brown/beige adipose tissue: from mechanisms to therapeutic potential. Journal of Physiology and Biochemistry. Vol. 76. Num. 2. 2019. p. 251-267.
-Jin, Y.; Sumsuzzman, D. M.; Choi, J.; Kang, H.; Lee, S. R.; Hong, Y. Molecular and Functional Interaction of the Myokine Irisin with Physical Exercise and Alzheimer’s Disease. Molecules. Vol. 23. Num. 12. 2018. p. 1-13.
-Kajimura, S.; Seale, P.; Spiegelman, B. M. Transcriptional Control of Brown Fat Development. Cell Metabolism. Vol. 11. Num. 4. 2010. p. 257-262.
-Kim, N.; Kang, M. S.; Nam, M.; Kim, A. S.; Hwang, G. S.; Kim, H. S. Eicosapentaenoic Acid (EPA) Modulates Glucose Metabolism by Targeting AMP-Activated Protein Kinase (AMPK) Pathway. International Journal of Molecular Sciences. Vol. 20. Num. 19. 2019. p. 1-16.
-Kim, N.; Lee, J. O.; Lee, H. J.; Kim, H. I.; Kim, J. K.; Lee, Y. W.; Lee, S. K.; Kim, S. K.; Park, S. H.; Kim, H. S. Endogenous Ligand for GPR120, Docosahexaenoic Acid, Exerts Benign Metabolic Effects on the Skeletal Muscles via AMP-activated Protein Kinase Pathway. The Journal of Biological Chemistry. Vol. 290. Num. 33. 2015. p. 20438-20447.
-Kurdiova, T.; Balaz, M.; Mayer, A.; Maderova, D.; Belan, V.; Wolfrum, C.; Ukropec, j.; Ukropcova, B. Exercise-mimicking treatment fails to increase Fndc5 mRNA & irisinsecretion in primary human myotubes. Peptides. Vol. 56. 2014. p. 1-7.
-Landim, B. C. Ativação de AMPK com o uso de metformina em células normais e tumorais de próstata estimuladas por altas concentrações de insulina e ácido graxo. Dissertação de Mestrado. Universidade Federal de Uberlândia. Minas Gerais. 2017.
-Lima, E. A.; Lima, M. M. D. A.; Marques, C. D. L.; Duarte, A. L. B. P.; Pita, I. R.; Pita, M. G. R. Peroxisome proliferator-activated receptor agonists (PPARs): a promising prospect in the treatment of psoriasis and psoriatic arthritis. Anais Brasileiros de Dermatologia. Vol. 88. Num. 6. 2013. p. 1029-1035.
-Liu, S. H.; Chiu, C. Y. C.; Wang, L. P.; Chiang, M. T. Omega-3 Fatty Acids-Enriched Fish Oil Activates AMPK/PGC-1 Signaling and Prevents Obesity-Related Skeletal Muscle Wasting. Marine Drugs. Vol. 17. Num. 6. 2019. p. 1-11.
-Llimona, F. Co-ativador de transcrição gênica PGC-1 na pancreatite aguda. Tese de Doutorado. Universidade de São Paulo. São Paulo. 2011.
-Martins, A. R.; Crisma, A. R.; Masi, L. N.; Amaral, C. L.; Marzuca-Nassr, G. N.; Bomfim, L. H. M.; Teodoro, B. G.; Queiroz, A. L.; Serdan, T. D. A.; Torres, R. P.; Mancini-Filho, J.; Rodrigues, A. C.; Alba-Loureiro, T. C.; Pithon-Curi, T. C.; Gorjao, R.; Silveira, L. R.; Curi, R.; Newsholme, P.; Hirabara, S. M. Attenuation of obesity and insulin resistance by fish oil supplementation is associated with improved skeletal muscle mitochondrial function in mice fed a high-fat diet. The Journal of Nutritional Biochemistry. Vol. 55. 2018. p. 76-88.
-Miotto, P. M.; McGlory, C.; Bahniwal, R.; Kamal, M.; Phillips, S. M.; Holloway, G. P. Supplementation with dietary v-3 mitigates immobilization-induced reductions in skeletal muscle mitochondrial respiration in young women. The FASEB Journal. Vol. 33. Num. 7. 2019. p. 8232-8240.
-Miranda, G. B. Efeitos da suplementação de taurina associada ao treinamento aeróbico intervalado sobre a concentração de irisina, o gasto energético e a composição corporal de mulheres obesas. Dissertação de Mestrado. Universidade Estadual Paulista Júlio de Mesquita Filho. São Paulo. 2017.
-Okada, L. S. R. R.; Oliveira, C. P.; Stefano, J. T.; Nogueira, M.A.; Silva, I. D. C. G.; Cordeiro, F. B.; Alves, V. A. F.; Torrinhas, R. S.; Carrilho, F. J.; Puri, P.; Waitzberg, D. L. Omega-3 PUFA modulate lipogenesis, ER stress, and mitochondrial Q3 dysfunction markers in NASH e Proteomic and lipidomic insight. Clinical Nutrition. Vol. 37. Num 5. 2018. p. 1474-1484.
-Oliveira, N. R. C. Os efeitos do exercício físico sobre parâmetros metabólicos e moleculares em músculo quadríceps de ratos adultos velhos ocorrem de maneira dependente da intensidade. Tese de Doutorado. Universidade do Extremo Sul Catarinense-UNESC. Santa Catarina. 2014.
-Pessoa, D. P.; Mendes, A. L. R. F.; Santos, G. C. M.; Morais, V. D.; Moreira, M. R.; Sousa, V. S. S. Influência da suplementação de ômega 3 no rendimento físico de praticantes de exercício físico. Revista Motricidade. Vol. 14. Num. 1. 2018. p. 144-149.
-Ribeiro, D. L.; Góes, R. M.; Pinto-Fochi, M. E.; Taboga, S. R.; Abrahamsson, P. A.; Dizeyi, N. AKT and AMPK Activation after High-Fat and High Glucose In Vitro Treatment of Prostate Epithelial Cells. Hormone and Metabolic Research. Vol. 46. Num. 7. 2014. p. 471-476.
-Rivada, A. R. Identificación mediante proteómica de nuevas adipoquinas y mioquinas implicadas en la obesidade. Tese de Doutorado. Universidad de Santiago de Compostela. Corunha. 2013.
-Rodríguez-Carmonaa, A.; Fontána, M. P.; Alvarellos, S. S.; Falcóna, T. G.; Bello, M. L. P.; Muniz, A. L.; Cordidoc, F. Niveles séricos de la adipomioquina irisina en pacientes con enfermedad renal crónica. Revista de la Sociedad Española de Nefrología. Vol. 36. Num. 5. 2016. p. 496-502.
-Shirvani, H.; Rahmati-Ahmadabad, S. Irisin interaction with adipose tissue secretions by exercise training and flaxseed oil supplement. Lipids in Health and Disease. Vol. 18. Num. 1. 2019. p. 1-9.
-Singhal, A. The Global Epidemic of Noncommunicable Disease: The Role of Early-Life Factors. Nestlé Nutrition Institute Workshop Series. Vol. 78. 2014. p. 123-132.
-Tang, H.; Yua, R; Liu, S.; Huwatibieke, B.; Li, Z.; Zhang, W. Irisin Inhibits Hepatic Cholesterol Synthesis via AMPK-SREBP2 Signaling. EBioMedicine. Vol. 6. 2016. p. 139-148.
-Tezze, C.; Romanello, V.; Sandri, M. FGF21 as modulator of metabolism in health and disease. Frontiers in Physiology. Vol. 10. 2019. p. 1-18.
-Vaughan, R. A.; Garcia-Smith, R.; Bisoffi, M.; Conn, C. A.; Trujillo, K. A. Conjugated linoleic acid or omega 3 fatty acids increase mitochondrial biosynthesis and metabolism in skeletal muscle cells. Lipids in Health and Disease. Vol. 11. Num. 142. 2012. p. 1-10.
-Yin, C.; Hu, W.; Wang, M.; Weicheng, Lv.; Jia, T.; Xiao, Y. Irisin as a mediator between obesity and vascular inflammation in Chinese children and adolescents. Nutrition, Metabolism and Cardiovascular Diseases. Vol. 30. Num. 2. 2020. p. 320-329.
-Yoshino, J.; Smith, G. I.; Kelly, S. C.; Julliand, S.; Reeds, D. N.; Mittendorfer, B. Effect of dietary n-3 PUFA supplementation on the muscle transcriptome in older adults. Physiological Reports. Vol. 4. Num 11. 2016. p. 1-11.
-Young, M. F., Valaris, S.; Wrann, C. D. A role for FNDC5/Irisin in the beneficial effects of exercise on the brain and in neurodegenerative diseases. Progress in Cardiovascular Diseases. Vol. 62. Num. 2. 2019. p. 172-178.
Copyright (c) 2023 Felipe de Almeida Rocha, Alexandre Duarte Baldin
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish in this journal agree to the following terms:
- Authors retain the copyright and grant the journal the right of first publication, with work simultaneously licensed under the Creative Commons Attribution License BY-NC which allows the sharing of the work with acknowledgment of the authorship of the work and initial publication in this journal.
- Authors are authorized to enter into additional contracts separately for non-exclusive distribution of the version of the work published in this journal (eg, publishing in institutional repository or book chapter), with acknowledgment of authorship and initial publication in this journal.
- Authors are allowed and encouraged to post and distribute their work online (eg, in institutional repositories or on their personal page) at any point before or during the editorial process, as this can bring about productive change as well as increase impact and impact. citation of published work (See The Effect of Free Access).