The impact of alcohol consumption on muscle recovery in men after physical exercise: a systematic review of randomized clinical trials

  • Henrique Subtil Sartori Acadêmico do Curso de Nutrição da Área do Conhecimento de Ciências da Vida (VIDA) da Universidade de Caxias do Sul (UCS), Caxias do Sul-RS, Brasil.
  • Adriane Rosa Costodio Acadêmica do Programa Especial de Graduação de Formação de Professores para a Educação Profissional da Universidade Federal de Santa Maria (UFSM), Santa Maria-RS, Brasil.
  • Karen Mello de Mattos Margutti Docente do Curso de Nutrição da Área do Conhecimento de Ciências da Vida (VIDA) da Universidade de Caxias do Sul (UCS), Caxias do Sul-RS, Brasil.
Keywords: Ethanol, Exercise, Men, Skeletal muscle

Abstract

Introduction and objective: The sporting environment exposes the practitioner to frequent consumption of high doses of alcohol, generally after exercise, which can harm the physiological adaptations of muscle tissue, affecting the athlete's performance. Therefore, this study aims to evaluate, through a systematic review, the impact of alcohol consumption on muscle recovery in men after physical exercise. Materials and methods: This is a systematic review, carried out in August 2023, in the Pubmed and Lilacs databases. Clinical trials with male humans, published in Portuguese, English or Spanish, in the last ten years, corresponding to the period from 2013 to 2023, were included; addressing the relationship between alcohol consumption and muscle mass recovery in male athletes. The studies selected for the research used healthy and physically active adult males. Results: 397 articles were found and only three articles were listed for the systematic review. Ethanol consumption ranged from 0.88 to 1.5 g/kg of weight. The impact on skeletal muscle depends on the exercise and dose of alcohol. In general, acute alcohol ingestion after exercise does not affect power, strength and pain during recovery, but it reduces the rates of muscle protein synthesis, mTOR signaling, autophagy and mitochondrial biogenesis, impairing muscle adaptation and long-term performance. term . Conclusion: It is recommended caution with alcohol consumption after physical exercise, always seeking the necessary nutrients to promote adequate recovery.

References

-Areta, J.L.; Burke, L.M.; Ross, M.L.; Camera, D.M.; West, D.W.; Broad, E.M.; Jeacocke, N.A.; Moore, D.R.; Stellingwerff, T.; Phillips, S.M.; Hawley, J.A.; Coffey, V.G. Timing and distribution of protein ingestion during prolonged recovery from resistance exercise alters myofibrillar protein synthesis. The Journal of physiology. Vol. 591. Num. 9. 2013. p. 2319-2331.

-Areta, J.L.; Smiles, W.J.; Coffey, V.G.; Phillips, S.M.; Moore, D.R.; Stellingwerff, T.; Burke, L.M.; Hawley, J.A.; Camera, D.M. Modulation of autophagy signaling with resistance exercise and protein ingestion following short-term energy deficit. American journal of physiology. Regulatory, integrative and comparative physiology. Vol. 309. Num. 5. 2015. p. R603-R612.

-Barnes, M.J.; Mündel, T.; Stannard, S.R. A low dose of alcohol does not impact skeletal muscle performance after exercise-induced muscle damage. European journal of applied physiology. Vol. 111. Num. 4. 2011. p. 725-729.

-Barnes, M.J.; Mündel, T.; Stannard, S.R. Acute alcohol consumption aggravates the decline in muscle performance following strenuous eccentric exercise. Journal of science and medicine in sport. Vol. 13. Num. 1. 2010. p. 189-193.

-Barnes, M.J.; Mündel, T.; Stannard, S.R. Post-exercise alcohol ingestion exacerbates eccentric-exercise induced losses in performance. European journal of applied physiology. Vol. 108. Num. 5. 2010. p. 1009-1014.

-Barry, A.E.; Piazza-Gardner, A.K. Drunkorexia: understanding the co-occurrence of alcohol consumption and eating/exercise weight management behaviors. Journal of American college health : J of ACH. Vol. 60. Num. 3. 2012. p. 236-243.

-Babault, N.; Païzis, C.; Deley, G.; Guérin-Deremaux, L.; Saniez, M.H.; Lefranc-Millot, C.; Allaert, F.A. Pea proteins oral supplementation promotes muscle thickness gains during resistance training: a double-blind, randomized, Placebo-controlled clinical trial vs. Whey protein. Journal of the International Society of Sports Nutrition. Vol. 12. Num. 1. 2015. p. 3.

-Bootman, M.D.; Chehab, T.; Bultynck, G.; Parys, J.B.; Rietdorf, K. The regulation of autophagy by calcium signals: Do we have a consensus?. Cell calcium. Num. 70. 2018. p. 32-46.

-Cao, W.; Li, J.; Yang, K.; Cao, D. An overview of autophagy: Mechanism, regulation and research progress. Bulletin du cancer. Vol. 108. Num. 3. 2021. p. 304-322.

-Conrad, M.; McNamara, P.; King, A. Alternative substance paradigm: effectiveness of beverage blinding and effects on acute alcohol responses. Experimental and clinical psychopharmacology. Vol. 20. Num. 5. 2012. p. 382-389.

-Churchley, E.G.; Coffey, V.G.; Pedersen, D.J.; Shield, A.; Carey, K.A.; Cameron-Smith, D.; Hawley, J. A. Influence of preexercise muscle glycogen content on transcriptional activity of metabolic and myogenic genes in well-trained humans. Journal of applied physiology (Bethesda, Md. : 1985). Vol. 102. Num. 4. 2007. p. 1604-1611.

-Fader, C.M.; Aguilera, M.O.; Colombo, M.I. Autophagy response: manipulating the mTOR-controlled machinery by amino acids and pathogens. Amino acids. Vol. 47. Num. 10. 2015. p. 2101-2112.

-Ferguson-Stegall, L.; McCleave, E.L.; Ding, Z.; Doerner, P.G.; 3rd, Wang, B.; Liao, Y.H.; Kammer, L.; Liu, Y.; Hwang, J.; Dessard, B.M.; Ivy, J.L. Postexercise carbohydrate-protein supplementation improves subsequent exercise performance and intracellular signaling for protein synthesis. Journal of strength and conditioning research. Vol. 25. Num. 5. 2011. p. 1210-1224.

-Galvão, T.F.; Pansani, T.D.S.A.; Harrad, D. Principais itens para relatar Revisões sistemáticas e Meta-análises: A recomendação PRISMA. Epidemiologia e serviços de saúde. Num. 24. 2015. p. 335-342.

-Jang, M.; Park, R.; Kim, H.; Namkoong, S.; Jo, D.; Huh, Y.H.; Jang, I.S.; Lee, J.I.; Park, J. AMPK contributes to autophagosome maturation and lysosomal fusion. Scientific reports. Vol. 8. Num. 1. 2018. p. 12637.

-Jokl, E.J.; Blanco, G. Disrupted autophagy undermines skeletal muscle adaptation and integrity. Mammalian genome : official journal of the International Mammalian Genome Society. Vol. 27. Num. 11-12. 2016. p, 525-537.

-Kay, L.; Nicolay, K.; Wieringa, B.; Saks, V.; Wallimann, T. Direct evidence for the control of mitochondrial respiration by mitochondrial creatine kinase in oxidative muscle cells in situ. The Journal of biological chemistry. Vol. 275. Num. 10. 2000. p. 6937-6944.

-Kuznetsov, A.V.; Javadov, S.; Margreiter, R.; Grimm, M.; Hagenbuchner, J.; Ausserlechner, M.J. The Role of Mitochondria in the Mechanisms of Cardiac Ischemia-Reperfusion Injury. Antioxidants. Vol. 8. Num. 10. 2019. p. 454.

-Lang, C.H.; Frost, R.A.; Deshpande, N.; Kumar, V.; Vary, T.C.; Jefferson, L.S.; Kimball, S.R. Alcohol impairs leucine-mediated phosphorylation of 4E-BP1, S6K1, eIF4G, and mTOR in skeletal muscle. American journal of physiology. Endocrinology and metabolismo. Vol. 285. Num. 6. 2003. p. E1205-E1215.

-LaStayo, P.C.; Woolf, J.M.; Lewek, M.D.; Snyder-Mackler, L.; Reich, T.; Lindstedt, S.L. Eccentric muscle contractions: their contribution to injury, prevention, rehabilitation, and sport. The Journal of orthopaedic and sports physical therapy. Vol. 33. Num. 10. 2003. p. 557-571.

-Halson, S.L. Recovery Techniques for Athletes. Sports Science Exchange. Vol. 26. Num. 120. 2013. p. 1-6.

-Hood, D.A.; Memme, J.M.; Oliveira, A.N.; Triolo, M. Maintenance of Skeletal Muscle Mitochondria in Health, Exercise, and Aging. Annual review of physiology. Vol. 81. 2019. p. 19-41.

-Levitt, D.E.; Idemudia, N.O.; Cregar, C.M.; Duplanty, A.A.; Hill, D.W.; Vingren, J.L. Alcohol After Resistance Exercise Does Not Affect Muscle Power Recovery. Journal of strength and conditioning research. Vol. 34. Num. 7. 2020. p. 1938-1944.

-Lieber, C.S. Metabolism of alcohol. Clinics in liver disease. Vol. 9. Num. 1. 2005. p. 1-35.

-Martin-Rincon, M.; Pérez-López, A.; Morales-Alamo, D.; Perez-Suarez, I.; de Pablos-Velasco, P.; Perez-Valera, M.; Perez-Regalado, S.; Martinez-Canton, M.; Gelabert-Rebato, M.; Juan-Habib, J.W.; Holmberg, H.C.; Calbet, J.A.L. Exercise Mitigates the Loss of Muscle Mass by Attenuating the Activation of Autophagy during Severe Energy Deficit. Nutrients. Vol. 11. Num. 11. 2019. p. 2824.

-Mishra, P.; Chan, D.C. Metabolic regulation of mitochondrial dynamics. The Journal of cell biology. Vol. 212. Num. 4. 2016. p. 379-387.

-Moore, D.R.; Churchward-Venne, T.A.; Witard, O.; Breen, L.; Burd, N.A.; Tipton, K.D.; Phillips, S.M. Protein ingestion to stimulate myofibrillar protein synthesis requires greater relative protein intakes in healthy older versus younger men. The journals of gerontology. Series A, Biological sciences and medical sciences. 2015.

-Moore, D.R.; Robinson, M.J.; Fry, J.L.; Tang, J.E.; Glover, E.I.; Wilkinson, S.B.; Prior, T.; Tarnopolsky, M.A.; Phillips, S.M. Ingested protein dose response of muscle and albumin protein synthesis after resistance exercise in young men. The American journal of clinical nutrition. Vol. 89. Num. 1. 2009. p. 161-168.

-Moore, M.J.; Werch, C. Relationship between vigorous exercise frequency and substance use among first-year drinking college students. Journal of American college health: J of ACH. Vol. 56. Num. 6. 2008. p. 686-690.

-Nicklin, P.; Bergman, P.; Zhang, B.; Triantafellow, E.; Wang, H.; Nyfeler, B.; Yang, H.; Hild, M.; Kung, C.; Wilson, C.; Myer, V.E.; MacKeigan, J.P.; Porter, J.A.; Wang, Y.K.; Cantley, L.C.; Finan, P.M.; Murphy, L.O. Bidirectional transport of amino acids regulates mTOR and autophagy. Cell. Vol. 136. Num. 3. 2009. p. 521-534.

-Ozturk, D.G.; Kocak, M.; Akcay, A.; Kinoglu, K.; Kara, E.; Buyuk, Y.; Kazan, H.; Gozuacik, D. MITF-MIR211 axis is a novel autophagy amplifier system during cellular stress. Autophagy. Vol. 15. Num. 3. 2019. p. 375-390.

-Ogata, T.; Yamasaki, Y. Ultra-high-resolution scanning electron microscopy of mitochondria and sarcoplasmic reticulum arrangement in human red, white, and intermediate muscle fibers. The Anatomical record. Vol. 248. Num. 2. 1997. p. 214-223.

-Parr, E.B.; Camera, D.M.; Areta, J.L.; Burke, L.M.; Phillips, S.M.; Hawley, J.A.; Coffey, V.G. Alcohol ingestion impairs maximal post-exercise rates of myofibrillar protein synthesis following a single bout of concurrent training. PloS one. Vol. 9. Num. 2. 2014. p. e88384.

-Poulsen, M.B.; Jakobsen, J.; Aagaard, N.K.; Andersen, H. Motor performance during and following acute alcohol intoxication in healthy non-alcoholic subjects. European journal of applied physiology. Vol. 101. Num. 4. 2007. p. 513-523.

-Proske, U.; Morgan, D.L. Muscle damage from eccentric exercise: mechanism, mechanical signs, adaptation and clinical applications. The Journal of physiology. Vol. 537. Num. (Pt 2). 2001. p. 333-345.

-Rachdaoui, N.: Sarkar, D.K. Effects of alcohol on the endocrine system. Endocrinology and metabolism clinics of North America. Vol. 42. Num. 3. 2013. p. 593-615.

Shirreffs, S.M.; Maughan, R.J. The effect of alcohol on athletic performance. Current sports medicine reports. Vol. 5. Num. 4. 2006. p. 192-196.

-Shiwa, S.R.; Costa, L.O.; Costa, L.C.; Moseley, A.; Hespanhol Junior, L.C.; Venâncio, R.; Ruggero, C.; Sato, T.O.; Lopes, A.D. Reproducibility of the Portuguese version of the PEDro Scale. Cadernos de saude publica. Vol. 27. Num. 10. 2011. p. 2063-2068.

-Singh, R.; Cuervo, A.M. Autophagy in the cellular energetic balance. Cell metabolism. Vol. 13. Num. 5. 2011. p. 495-504.

-Smiles, W.J.; Parr, E.B.; Coffey, V.G.; Lacham-Kaplan, O.; Hawley, J.A.; Camera, D.M. Protein coingestion with alcohol following strenuous exercise attenuates alcohol-induced intramyocellular apoptosis and inhibition of autophagy. American journal of physiology. Endocrinology and metabolism. Vol. 311. Num. 5. 2016. p. E836-E849.

-Steiner, J.L.; Lang, C.H. Ethanol acutely antagonizes the refeeding-induced increase in mTOR-dependent protein synthesis and decrease in autophagy in skeletal muscle. Molecular and cellular biochemistry. Vol. 456. Num. 1-2. 2019. p. 41-51.

-Suter, P.M.; Schutz, Y. The effect of exercise, alcohol or both combined on health and physical performance. International journal of obesity. Vol. 32. Num. Suppl 6. 2008. p. S48-S52.

-Vella, L.D.; Cameron-Smith, D. Alcohol, athletic performance and recovery. Nutrients. Vol. 2. Num. 8. 2010. p. 781-789.

-Viloria, M.A.D.; Li, Q.; Lu, W.; Nhu, N.T.; Liu, Y.; Cui, Z.Y.; Cheng, Y.J.; Lee, S.D. Effect of exercise training on cardiac mitochondrial respiration, biogenesis, dynamics, and mitophagy in ischemic heart disease. Frontiers in cardiovascular medicine. Num. 9. 2022. p. 949744.

-Wang, P.; Long, M.; Zhang, S.; Cheng, Z.; Zhao, X.; He, F.; Liu, H.; Ming, L. Hypoxia inducible factor-1α regulates autophagy via the p27-E2F1 signaling pathway. Molecular medicine reports. Vol. 16. Num. 2. 2018. p. 2107-2112.

-WHO. World Health Organization. Global status report on alcohol and health. Geneva: World Health Organization. 2018.

Published
2024-07-11
How to Cite
Sartori, H. S., Costodio, A. R., & Margutti, K. M. de M. (2024). The impact of alcohol consumption on muscle recovery in men after physical exercise: a systematic review of randomized clinical trials. RBNE - Brazilian Journal of Sports Nutrition, 18(110), 253-264. Retrieved from https://www.rbne.com.br/index.php/rbne/article/view/2295
Section
Scientific Articles - Original