Protein consumption effects on hypertrophy provocate by resistance training: a current vision

  • Santiago Tavares Paes Universidade Federal de Juiz de Fora
Keywords: Protein intake, Resistance exercise, Hypertrophy, Physical exercise, Nutrition

Abstract

Aim: Discuss and synthesize researches examining the effects of protein intake on muscle hypertrophy caused by resistance training.Data sources: The survey was conducted in Pubmed databases. The key words used were: Protein consumption, Protein Intake, Resistance Exercise, Resistance Training, Hypertrophy, Exercise, Nutrition.Data synthesis: Screening studies using the keywords found 73,195 studies. After cross between the descriptors, it was obtained 4,412 studies. Of these, performed after analyzing the titles of the studies were bandied about 502 relevant references; after reading the abstracts a total of 120 studies were selected and then submitted to the inclusion/exclusion criteria, totaling 47 studies. Most of the studies related to practice Resistance Training and muscle protein synthesis capability which effect is associated with, among other nutritional factors, the daily intake of relatively large amounts of high quality protein amino acid.Conclusions: The resistance training practiceis able to enhance the synthesis of muscle proteins acute and chronically. Athletes who perform this type of training need to consume daily a higher amount of protein rich in essential amino acids to recovery muscle tissue damage caused by training. The approximate consumption of 20-25g of protein, preferably with significant amounts of leucine, seem to enhance the synthesis and myofibrillar recovery especially post-training, however the level of hypertrophy caused by this type of exercise is also influenced by metabolic, tension and hormonal factors.

References

-Antonio, J.; Peacock, C. A.; Ellerbroek, A.; Fromhoff, B.; Silver, T. The effects of consuming a high protein diet (4.4 g/kg/d) on body composition in resistance-trained individuals. Journal of the International Society of Sports Nutrition. Vol. 11. Num.19. 2014.

-Aparicio, V. A.; Nebot, E.; G. Kapravelou, J. M.; Sánchez, C.; Porres, J.M.; Jurado, M. L.; Aranda, P. El entrenamiento de fuerza reduce la acidosis metabólica y la hipertrofia hepática y renal consecuentes del consumo de una dieta hiperproteica en ratas. Nutricion Hospitalaria. Vol. 26. Num. 6. p. 1478-1486. 2011.

-Aparicio, V. A.; Sánchez, C.; Ortega, F. B.; Nebot, E.; G. Kapravelou, J. M.Porres, J.M.; Aranda, P. Effects of the dietary amount and source of protein, resistance training and anabolic-androgenic steroids on body weight and lipid profile of rats. Nutricion Hospitalaria. Vol. 28. Num. 1. p. 127-136. 2013.

-Areta, J. L.; Burke, L. M.; Ross, M. L.; Camera, D. M.; West, D. W.D.; Broad, E. M.; Jeacocke, N. A.; Moore, D. R.; Stellingwerff, T.; Phillips, S. M.; Hawley, J. A.; Coffey, G. V. Timing and distribution of protein ingestion during prolonged recovery from resistance exercise alters myofibrillar protein synthesis. J Physiol. Vol. 591. Num. 9. p. 2319-2331. 2013.

-Beelen, M.; Tieland, M.; Gijsen, A. P.; Vandereyt, H.; Kies, A. K.; Kuipers, H.; Saris, W. H. M.; Koopman, R.; Van Loon, L. J. C. Coingestion of carbohydrate and protein hydrolysate stimulates muscle protein synthesis during exercise in young men, with no further increase during subsequent overnight recovery. The Journal of Nutrition. Vol. 138. p. 2198-2204. 2008.

-Blaauw, B.; Schiaffino, S.; Reggiani, C. Mechanisms Modulating Skeletal Muscle Phenotype. Compr Physiol. Vol. 3. p. 1645-1687. 2013.

-Bolster, D. R.; Crozier, S. J.; Kimball, S. R.; Jeferson, L. S. AMP activated protein kinase suppresses protein synthesis in rat skeletal muscle through down-regulated mammalian target of rapamycin (mTOR) signaling. J Biol Chem. Vol. 277. p. 23977-23980. 2002.

-Borsheim, E.; Cree, M. G.; Tipton, K. D.; Elliot, T. A.; Aarsland, A.; Wolfe, R. R. Effect of carbohydrate intake on net muscle protein synthesis during recovery from resistance exercise. Journal of Apply Physiology. Vol. 96. p. 674-678. 2004.

-Bosse, J. D.; Dixon, B. M. Dietary protein to maximize resistance training: a review and examination of protein spread and change theories. Journal of the International Society of Sports Nutrition. Vol. 9. Num. 42. 2012.

-Burd, N. A.; West, D. W. D.; Staples, A. W.; Atherton, P. J.; Baker, J. M.; Moore, D. R.; Holwerda, A. M.; Parise, G.; Rennie, M. J.; Baker, s. K.; Phillips, S. M. Low-Load High Volume Resistance Exercise Stimulates Muscle Protein Synthesis More Than High-Load Low Volume Resistance Exercise in Young Men. Plos One. Vol. 5. Num. 8, 2010.

-Burke, L. M.; Hawley J. A.; Ross M. L.; Moore, D. R.; Phillips, S. M.; Slater, G. R.; Stellingweff, T.; Tipton, K. D.;Garnham, A. P.; Coffey, V. G. Pre exercise aminoacidemia and muscle protein synthesis after resistance exercise. Med Sci Sports Exerc. Vol. 44. Num. 10. p. 1968-1977. 2012.

-Churchward-Venne, T. A.; Burd, N. A.; Phillips, S. M. Nutritional regulation of muscle protein synthesis with resistance exercise: strategies to enhance anabolism. Nutrition & Metabolism. Vol. 9. Num. 40. 2012.

-Crozier, S. J.; Kimball, S. R.; Emmert, S. W.; Anthony, J. C.; Jefferson, L. S. Oral leucine administration stimulates protein synthesis in rat skeletal muscle. The Journal of Nutrition. Vol. 135. p. 376-382. 2005.

-Denne, S. C.; Liechty, E. A.; Liu, Y. M.; Brechtel, G.; Baron, A. D. Proteolysis in skeletal-muscle and whole-body in response to euglycemic hyperinsulinemiain normal adults. American Journal of Physiology. Vol. 261. p. 809-814. 1991.

-Egan, B.; Zierath, J. R. Exercise Metabolism and the Molecular Regulation of Skeletal Muscle Adaptation. Cell Metabolism. Vol. 5. Num.17. p.162-184. 2013.

-Glynn, E. L.; Fry, C. S.; Drummond, M. J.; Dreyer, H. C.; Dhanani, S.; Volpi, E.; Rasmussem, B. B. Muscle protein breakdown has a minor role in the protein anabolic response to essential amino acid and carbohydrate intake following resistance exercise. Am J Physiol RegulIntegr Comp Physiol. Vol. 299. p. 533-540. 2010.

-Glynn, E. L.; Fry, C. S.; Timmerman, K. L.; Drummond, M. J.; Volpi, E.; Rasmussen, B. B. Addition of carbohydrate or alanine to an essential amino acid mixture does not enhance human skeletal muscle protein anabolism. The Journal of Nutrition. Vol. 143. p. 307-314. 2013.

-Green, K. K.; Shea, J. L.; Vasdev, S.; Randell, E.; Gulliver, W.; Sun, G: Higher dietary protein intake is associated with lower body fat in the Newfoundland Population. Clin Med Insights Endocrinol Diabetes. Vol. 3. p. 25-35. 2010.

-Greenhaff P. L.; Karagounis, L.; Peirce, N; Simpson, E.J.; Hazell,M.; Layfield, R.; Wackerhage, H.; Smith, K.; Atherton, P.; Selby, A.; Rennie, M. J. Disassociation between the effects of amino acids andinsulin on signalling, ubiquitin-ligases and protein turnover in human muscle. Am J Physiol Endocrinol Metab. Vol. 295. p. 595-604. 2008.

-Guimarães-Ferreira, L.; Cholewa J.; Naimo, M. A.; Zhi, X; Magagnin, D.; Dal Ponte de Sá, R. B.; Streck, E. L.; Silva Teixeira, T.; Zanchi, N. E. Resistance training and protein intake synergistic effects: Practical aspects. Nutrition. 2014.

-Helms, E. R.; Aragon, A. A.; Fitschen, P. J. Evidence-based recommendations for natural bodybuilding contest preparation: nutrition and supplementation. Journal of the International Society of Sports Nutrition. Vol. 11. Num. 20. 2014.

-Helms, E. R.; Zinn C.; Rowlands, D. S.; Brown, S. R. A Systematic Review of Dietary Protein During Caloric Restriction in Resistance Trained Lean Athletes: A Case for Higher Intakes. International Journal of Sport Nutrition and Exercise Metabolism. Vol. 4. p. 127-138. 2014.

-Herring, S. A.; Kibler, W. B.; Putukian, M. Selected Issues for Nutrition and the Athlete: A Team Physician Consensus Statement. Medicine & Science and Sports & Exercise. Vol. 45. Num.12. p. 2378-2386. 2013.

-Jewell, J. L.; RusselR. C., Guan, K. Amino acid signalling upstream of mTOR. Nat Rev Mol Cell Biol. Vol.14. Num. 3. p. 133-139. 2013.

-Katsanos, C. S.; Kobayashi, H.; Sheffield-Moore, M. Aarsland, A.; Wolfe, R. R. A high proportion of leucine is required for optimal stimulation of the rate of muscle protein synthesis by essential amino acids in the elderly. Am J Physiol Endocrinol Metab. Vol. 291. p. 381-387. 2006.

-Koopman, R.; Beelen, M.; Stellingwerff, T.; Pennings, B.; Saris, W. H.; Kies, A. K.; Kuipers, H.; Loon, L. J. Coingestion of carbohydrate with protein does not further augment post-exercise muscle protein synthesis. American Journal of Physiology Endocrinology Metabolism. Vol. 293. p. 833-842. 2007.

-Kumar, V.; Selby, A.; Rankin, D.; Patel, R.; Atherton, P.; Hildebrandt, W.; Williams, J.; Smith, K.; Seynnes, O.; Hiscock, N.; Rennie, M. J. Age-related differences in the dose–response relationship of muscle protein synthesis to resistance exercise in young and old men. J Physiol. Vol. 587. p. 211–217. 2009.

-Mitchell, C. J.; Churchward-Venne, T. A.; West, D. W. D.; Burd, N. A; Breen, L.; Baker, S. K.; Phillips, S. M. Resistance exercise load does not determine training mediated hypertrophic gains in young men. J Appl Physiol. Vol. 113. p. 71-77. 2012.

-Mitchell, C. J.; Churchward-Venne, T. A.; Bellamy, L.; Parise, G.; Baker, S. K.; Phillips, S. M. Muscular and Systemic Correlates of Resistance Training-Induced Muscle Hypertrophy. Plos One. Vol. 8. Num. 10. 2013.

-Moore, D. R.; Robinson, M. J.; Fry, J. L.; Tang, J. E.; Glover, E. I.; Wilkinson, S. B.; Prior T.; Tarnopolsky, M. A.; Phillips, S. M. Ingested protein dose response of muscle and albumin protein synthesis after resistance exercise in young men. American Journal of Clinical Nutrition. Vol. 89. p. 161-168. 2009.

-Pasiakos, S. M. Exercise and Amino Acid Anabolic Cell Signaling and the Regulation of Skeletal Muscle Mass. Nutrients. Vol. 4. p. 740-758. 2012.

-Phillips, S. M. Physiologic and molecular bases of muscle hypertrophy and atrophy: impact of resistance exercise on human skeletal muscle (protein and exercise dose effects). Apply Physiology Nutrition Metabolism. Vol. 34. p. 403-410. 2009.

-Phillips, S. M. Protein requirements and supplementation in strength sports. Nutrition. Vol. 20. p. 689-695. 2004.

-Phillips, S.M.;Van Loon, L.J. Dietary protein for athletes: from requirements to optimum adaptation. Journal of Sports Sciences. Vol. 29 (Suppl. 1). p. 29-38. 2011.

-Poortmans, J. R.; Carpentier, A.; Pereira-Lancha, L. O.; Lancha Jr., A. Protein turnover, amino acid requirements and recommendations for athletes and active populations. Brazilian Journal of Medical and Biological Research. Vol. 45. p. 875-890. 2012.

-Reidy, P. T.; Walker, D. K.; Dickinson, J. M.; Gundermann, D. M.; Drummond, M. J.; Timmerman, K. L.; Fry, C. S.; Borack, M. S.; Cope, M. B.; Mukherjea, R.; Jennings, K; Volpi, E.; Rasmussen, B. B. Protein Blend Ingestion Following Resistance Exercise Promotes Human Muscle Protein Synthesis. The Journal of Nutrition. Vol. 143. p. 410-416. 2013.

-Rose, A. J.; Alsted, T. J.; Jensen, T.E.; Kobbero, J.B.; Maarbjerg, S. J.; Jensen, J.; Richter, E. A. A. Ca(2+)-calmodulin-eEF2K-eEF2 signalling cascade, but not AMPK, contributes to the suppression of skeletal muscle protein synthesis during contractions. J Physiol. Vol. 587. p. 1547-1563. 2009.

-Slater, G; Phillips, S. M. Nutrition guidelines for strength sports: Sprinting, weightlifting, throwing events, and bodybuilding. Journal of Sports Sciences. Vol. 29. p. 67-77. 2011.

-Staples, A. W.; Burd, N. A.; West, D. W. D.; Currie, K. D.; Atherton, P. J.; Moore, D. R.; Rennie, M. J.; Macdonald, M. J.; Baker, S. K.; Phillips, S. M. Carbohydrate Does Not Augment Exercise-Induced Protein Accretion versus Protein Alone. Medicine & Science in Sports & Exercise. 2011.

-Stark, M.; Lukaszuk, J.; Prawitz, A.; Salacinski, A. Protein timing and its effects on muscular hypertrophy and strength in individuals engaged in weight-training. Journal of International Society Sports Nutrition. Vol. 9. Num. 1. 2012.

-Svanberg, E.; Jefferson, L. S.; Lundholm, K.; Kimball, S. R. Postprandial stimulation of muscle protein synthesis is independent of changes in insulin. American Journal of Physiology. Vol. 272. p. 841-847. 1997.

-Tang, J. E.; Phillips, S. M. Maximizing muscle protein anabolism: the role of protein quality. Current Opinion in Clinical Nutrition and Metabolic Care. Vol. 12. p. 66-71. 2009.

-Tipton, K. D. Efficacy and consequences of very-high-protein diets for athletes and exercisers. Proc Nutr Soc. Vol. 70. Num. 2. p. 205-214. 2011.

-Van Loon, L. J. C. Is There a Need for Protein Ingestion During Exercise? Sports Medicine. Vol. 44. p. 105-111. 2014.

-Walker, D. K.; Dickinson, J. M.; Timmerman, K. L.; Drummond, M. J.; Reidy, P.T.; Fry, C. S.; Gundermann, D. M.; Rasmussem, B. B. Exercise, Amino Acids and Aging in the control of human muscle protein synthesis. Medicine & Science & Sports Exercise. Vol. 43. Num. 12. p. 2249-2258. 2011.

-West, D. W. D.; Burd, N. A.; Coffey, V. G.; Baker, S. K.; Burke, L. M.; Hawley, J. A.; Moore, D. R.; Stellingwerff, T.; Phillips, S. M. Rapid aminoacidemia enhances myofibrillar protein synthesis and anabolic intramuscular signaling responses after resistance exercise. Am J Clin Nutr. Vol. 94. p. 795-803. 2011.

-Wilkinson, S. B.; Tarnopolsky, M. A.; Macdonald, M. J.; Macdonald, J. R.; Armstrong, D.; Phillips, S. M. Consumption of fluid skim milk promotes greater muscle protein accretion after resistance exercise than does consumption of an isonitrogenous and isoenergetic soy-protein beverage. American Journal of Clinical Nutrition. Vol. 85. p. 1031-1040. 2007.

Published
2016-03-04
How to Cite
Paes, S. T. (2016). Protein consumption effects on hypertrophy provocate by resistance training: a current vision. RBNE - Brazilian Journal of Sports Nutrition, 10(55), 11-23. Retrieved from https://www.rbne.com.br/index.php/rbne/article/view/595
Section
Scientific Articles - Original