Caffeine supplementation can make runners run firther and improve pace strategy
Abstract
Caffeine can stimulate the central nervous system and thus increase exercise tolerance throughout rating perceived exertion (RPE) changes and it can change the pace strategy (PS) during a physical task. The aim of this study was to check if caffeine supplementation might promote changes in PS during a laboratory run test (LRT). In a double-blind, crossover, randomized and counterbalanced fashion, fifteen healthy-male (age: 24 ± 4.4 years; VO2max. 53 ± 5 ml.Kg-1.min-1) ingested 6 mg.kg-1 of CAF or placebo supplementation, 60 minutes before the LRT. The LRT was three-minutes sets (at fixed speed, 1 km/h above Onset Blood Lactate Accumulation) until volitional exhaustion; Rest Time Interval (RTI) between sets were chosen by the participants in the first test (ranging from 30 to 60s). RPE, Heart Rate (HR) and blood plasma lactate concentration ([La]p) were collected at rest, immediately after each set and at the end of test. Time to exhaustion was higher for CAF (p= 0.014). RTI between sets was significantly lower in caffeine (p= 0.048) and this decreased significantly the time to perform a same distance (p= 0.034). Overall HR and [La]p was similar for both conditions (p= 0.252, p= 0.129, respectively). Despite similar overall RPE throughout test (p= 0.380), in caffeine, there was not a RPE abrupt increase similar to placebo. Caffeine supplementation can positively influence running PS (to decrease the RTI required for recovery between moments of high-intensity exercise), as well as, can make an individual run further (in the same event).
References
-Astorino, T. A.; et al. Effect of caffeine on RPE and perceptions of pain, arousal, and pleasure/displeasure during a cycling time trial in endurance trained and active men. Physiology &Behavior. Vol. 106. Núm. 2. p. 211-217. 2012.
-Black, M. I.; et al. Self-pacing increases critical power and improves performance during severe-intensity exercise. Applied Physiology, Nutrition, and Metabolism. 2015. Available in: <http://dx.doi.org/10.1139/apnm-2014-0442>.
-Borg, G. A.; Noble, B. J. Perceived exertion. Exercise and sport sciences reviews. Vol. 2. Núm. 1. p. 131-154. 1974.
-Burdan, F. Chapter 90 -Pharmacology of Caffeine: The Main Active Compound of Coffee. In: Preedy, V. R. (Ed.). Coffee in Health and Disease Prevention. Academic Press. 2015. p. 823-829.
-Cheng, B.; et al. A New Approach for the Determination of Ventilatory and Lactate Thresholds. Int J Sports Med. Vol. 13. Núm. 7. p. 518-522. 1992.
-Currell, K.; Jeukendrup, A. E. Validity, reliability and sensitivity of measures of sporting performance. Sports medicine. Vol. 38. Núm. 4. p. 297-316. 2008.
-De França, E.; et al. Data reproducibility of pace strategy in a laboratory test run. Data in brief. Vol. 7. p. 946-950. 2016.
-De Koning, J. J.; et al. Regulation of Pacing Strategy during Athletic Competition. PLoSONE. Vol. 6. Núm. 1. p. e15863. 2011.
-De Morree, H. M.; Klein, C.; Marcora, S. M. Cortical substrates of the effects of caffeine and time-on-task on perception of effort. Journal of Applied Physiology. Vol. 117. Núm. 12. p. 1514-1523. 2014.
-De Morree, H. M.; Marcora, S. M. Psychobiology of Perceived Effort During Physical Tasks. In: (Ed.). Handbook of Biobehavioral Approaches to Self-Regulation: Springer. 2015. p. 255-270.
-Denadai, B. S.; Gomide, E. B. G.; Greco, C. C. The relationship between onset of blood lactate accumulation, critical velocity, and maximal lactate steady state in soccer players. The Journal of Strength & Conditioning Research. Vol. 19. Núm. 2. p. 364-368. 2005.
-Doherty, M.; Smith, P. Effects of caffeine ingestion on rating ofperceived exertion during and after exercise: a meta‐analysis. Scandinavian journal of medicine & sciencein sports. Vol. 15. Núm. 2. p. 69-78. 2005.
-Donghia, P.S.; Xavier, A. P.; De França, E.; Santana, J. O.; Madureira, D.; Correa, S. C.; De Lira, F. S.; Caperuto, E. C. Caffeine supplementation (6mg/kg) improves total time to exhaustion in a fixed speed protocol, without physiological alterations in runners. Revista Brasileira de Prescrição e Fisiologia do Exercício. Vol. 10. Núm. 58. p. 214-219. 2016.
Available in: <http://www.rbpfex.com.br/index.php/rbpfex/article/view/902/779>
-Fernández-Dueñas, V.; et al. Uncovering caffeine’s adenosine A2A receptor inverse agonism in experimental parkinsonism. ACS chemical biology. 2014.
-Franke, A. G.; Bagusat, C. Chapter 80 -Use of Caffeine for Cognitive Enhancement. In: Preedy, V. R. (Ed.). Coffee in Health and Disease Prevention. San Diego. Academic Press. 2015. p. 721-727.
-Fritz, C. O.; Morris, P. E.; Richler, J. J. Effect size estimates: currentuse, calculations, and interpretation. Journal of Experimental Psychology: General. Vol. 141. Núm. 1. p. 2. 2012.
-Ganio, M. S.; et al. Effect of caffeine on sport-specific endurance performance: a systematic review. The Journal of Strength & Conditioning Research. Vol. 23. Núm. 1. p. 315-324. 2009.
-Glaister, M.; et al. Caffeine supplementation and peak anaerobic power output. European Journal of Sport Science. p. 1-7. 2014. Disponível em: <http://dx.doi.org/10.1080/17461391.2014.962619>
-Goldstein, E. R.; et al. International society of sports nutrition position stand: caffeine and performance. J Int Soc Sports Nutr. Vol. 7. Núm. 1. p. 5. 2010.
-Grassi, B.; Rossiter, H. B.; Zoladz, J. A. Skeletal Muscle Fatigue and Decreased Efficiency: Two Sides of the Same Coin? Exercise and sport sciences reviews. 2015.
-Heyward, V. H.; Gibson, A. Assessing Cardiorespiratory Fitness hayward, in Heyward,V.H.;Gibson,A. In: (Ed.). Advanced Fitness Assessment and Exercise Prescription 7th Edition: Human Kinetics. 2014. p. 79-120.
-Huang, Z.L.; et al. Adenosine A2A, but not A1, receptors mediate the arousal effect of caffeine. Nat Neurosci. Vol. 8. Núm. 7. p. 858-859. 2005.
-Jackson, A. S.; Pollock, M. L. Generalized equations for predicting bodydensity of men. British Journal of Nutrition. Vol. 40. Núm. 3. p. 497-504. 1978.
-Kay, D.; et al. Evidence for neuromuscular fatigue during high-intensity cycling in warm, humid conditions. European journal of applied physiology. Vol. 84. Núm. 1-2. p. 115-121. 2001.
-Ledent, C.; et al. Aggressiveness, hypoalgesia and high blood pressure in mice lacking the adenosineA2a receptor. Nature. Vol. 388. Núm. 6643. p. 674-678.1997.
-Macbeth, G.; Razumiejczyk, E.; Ledesma, R. D. Cliff's Delta Calculator: A non-parametric effect size program for two groups of observations. Universitas Psychologica. Vol. 10. Núm. 2. p. 545-555. 2011.
-Marcora, S. Counterpoint: Afferent Feedback From Fatigued Locomotor Muscles is not an Important Determinant of Endurance Exercise Performance. Journal of Applied Physiology. Vol. 108. Núm. 2. p. 454-456. 2010.
-Marcora, S. M.; Bosio, A.; De Morree, H. M. Locomotor muscle fatigue increases cardiorespiratory responses and reduces performance during intense cycling exercise independently from metabolic stress. American Journal of Physiology-Regulatory, Integrative and Comparative Physiology. Vol. 294. Núm. 3. p. R874-R883. 2008.
-Marino, F. E. If only I were paramecium too! A case for the complex, intelligent system of anticipatory regulation in fatigue. Fatigue: Biomedicine, Health & Behavior. Vol. 2. Núm. 4. p. 185-201. 2014.
-Meeusen, R. Exercise, Nutritionand the Brain. Sports Medicine. Vol. 44. Núm. 1. p. 47-56. 2014.
-Millet, G. Y. Can neuromuscular fatigue explain running strategies and performance in ultra-marathons? Sports Medicine. Vol. 41. Núm. 6. p. 489-506. 2011.
-Minett, G. M.; Duffield, R. Is recovery driven by central or peripheral factors? A role for the brain in recovery following intermittent-sprint exercise. Frontiers in physiology. Vol. 5. 2014.
-Morita, S.; et al. Plasma lactate concentration as an indicator of plasma caffeine concentration in acute caffeine poisoning. Acute Medicine & Surgery. Vol. 1. Núm. 3. p. 159-162. 2014.
-Penteado, R.; et al. Physiological responses at critical running speed during continuous and intermittent exhaustion tests. Science & Sports. Vol. 29. Núm. 6. p. e99-e105. 2014.
-Smith, M. R.; Marcora, S. M.; Coutts, A. J. Mental Fatigue Impairs Intermittent Running Performance. Medicine andscience in sports and exercise. 2014.
-Spriet, L. L. Exercise and sport performance with low doses of caffeine. Sports medicine. Vol. 44. Núm. 2. p. 175-184. 2014.
-Targum, S. D.;et al. Fatigue across the CNS spectrum: a clinical review. Fatigue:Biomedicine, Health & Behavior. Vol. 2. Núm. 4. p. 231-246. 2014.
-Teekachunhatean, S.; et al. Pharmacokinetics of Caffeine following a Single Administration of Coffee Enema versus OralCoffee Consumption in Healthy Male Subjects. ISRN Pharmacology. Vol. 20. Núm. 13. p. 7. 2013. Available in:<http://dx.doi.org/10.1155/2013/147238>.
-Warren, G. L.; et al. Effect of caffeine ingestion on muscular strength and endurance: a meta-analysis. Med Sci Sports Exerc. Vol. 42. Núm. 7. p. 1375-1387. 2010.
-Wright, R. A. Refining the Prediction of Effort: Brehm's Distinction between Potential Motivation and Motivation Intensity. Social andPersonality Psychology Compass. Vol. 2. Núm. 2. p. 682-701. 2008.
-Yang, J.-N.; Chen, J.-F.; Fredholm, B. B. Physiological roles of A1 and A2A adenosine receptors in regulating heart rate, body temperature, and locomotion as revealed using knockout mice and caffeine. 2009. p. H1141-H1149. Available in:<http://ajpheart.physiology.org/ajpheart/296/4/H1141.full.pdf>
Authors who publish in this journal agree to the following terms:
- Authors retain the copyright and grant the journal the right of first publication, with work simultaneously licensed under the Creative Commons Attribution License BY-NC which allows the sharing of the work with acknowledgment of the authorship of the work and initial publication in this journal.
- Authors are authorized to enter into additional contracts separately for non-exclusive distribution of the version of the work published in this journal (eg, publishing in institutional repository or book chapter), with acknowledgment of authorship and initial publication in this journal.
- Authors are allowed and encouraged to post and distribute their work online (eg, in institutional repositories or on their personal page) at any point before or during the editorial process, as this can bring about productive change as well as increase impact and impact. citation of published work (See The Effect of Free Access).