Evaluation of food and physical training on the memory and learning in diabetic rats

  • Telmo José Mezadri Universidade do Vale do Itajaí­
  • Xana Raquel Ortolan Faculdade Avantis
Keywords: Learning, Cognition, Diabetes mellitus

Abstract

Aim: To evaluate the influence of physical training and food restriction on learning and memory of diabetic rats. Materials and methods: Forty female Wistar rats, diabetic streptozotocin induced, were divided into 4 groups (n = 10 / group). The G1 corresponded to the control group and had free access to food and water. The G2 - Food Restriction group - received water ad libitum and feed restriction. The G3 to the swimming group that performed physical training for 10 minutes a day during the three weeks of the experiment. The G4 referred to the group Food Restriction + Swimming, which was submitted to the same methodological procedures of G2 and G3. In the twenty-first day the groups were evaluated in Inhibitory Dodge comparing the data by ANOVA followed by Tukey test. Results: The data showed a significant increase (p <0.01) in the time spent on the platform of the G2 group. For animals of G1, G3 and G4, although the platform length of stay was higher in the test session, the difference was not significant. Conclusions: The results of this study and according to the methodology used indicate that in diabetic animals, moderate food restriction (30%) improved performance on the learning and memory compared to the control animals and rats of swimming groups.

Author Biographies

Telmo José Mezadri, Universidade do Vale do Itajaí­

Laboratório de Biologia e Comportamento. Centro de Ciências da Saúde.

Xana Raquel Ortolan, Faculdade Avantis

Centro de Ciências da Saúde

References

-Abbatecola, A. M.; Paolisso, G. Relationship between baseline glycemic control and cognitive function in individuals with type 2 diabetes and other cardiovascular risk factors: the Action to ControlCardiovascular Risk in Diabetes-Memory in Diabetes Trial. Diabetes Care. Vol. 32. Num. 8. 2009. p. e102.

-Ahlskog, J. E.; Geda, Y. E.; Petersen, R.C. Physical Exercise as a Preventive or Disease-Modifying Treatment of Dementia and Brain Aging. Mayo Clinic Proceedings. Vol. 86. Num. 9. 2011. p. 876-884.

-Ba-Tin, L.; Strike, P.; Tabet, N. Diabetic Peripheral Microvascular Complications: Relationship to Cognitive Function. Cardiovascular Psychiatry Neurology. Vol. 2011. 2011.

-Carvalho, J. A.; Santos, C. S. S.; Carvalho, M. P.; Souza, L. S.; Fontes, R. Restrição calórica: uma abordagem sobre a alimentação com vista a uma melhor qualidade de vida. Revista Científica do ITPAC. Vol. 7. 2014.

-Choi, J. S.; Choi, K. M.; Lee, C. K. Caloric restrictionimproves efficiency and capacity of the mitochondrial electron transport chain in Saccharomyces cerevisiae. Biochemical and Biophysical Research Communications. Vol. 409. 2011. p. 308-314.

-Ferreira, F. R.; Spini, V. B. M. G.; Lopes, E. J.; Lopes, R. R.F.; Moreira, E. A.; Amaral, M. A. F.; Cunha, A. L. S.; Borges, A. P. S.; Marson, L. B.; Ribeiro G. C. C. Efeitos da restrição alimentar sobre o aprendizado, memória e estresse em roedores. Bioscience Journal. Vol. 22. 2006. p. 91-97.

-Geng, Y. Q.; Li, T.T.; Liu, X. Y.; Li, Z. H.; Fu, Y.C. SIRT1 and SIRT5 activity expression and behavioral responses to calorie restriction. Journal of Cell Biochemistry. Vol. 112. 2011. p. 3755-3761.

-Guo, J.; Bakshi, V.; Lin, A. L. Early Shifts of Brain Metabolism by Caloric Restriction Preserve White Matter Integrity and Long-Term Memory in Aging Mice. Front Aging Neuroscience. Vol. 7. 2015. p. 213.

-Hall, K. E.; McDonald, M. W.; Grisé, K. N.; Campos, O. A.; Noble, E. G.; Melling. J.C. W. The role of resistance and aerobic exercise training on insulin sensitivity measures in STZ-induced Type 1diabetic rodents. Metabolism. Vol. 62. Num. 10. 2013. p. 1485-1494.

-Hebert, S.L.; Nair, K. S. Protein and energy metabolim in type 1 diabetes. Clinical Nutrition. Vol. 29. 2009. p. 13-17.

-Izquierdo, I.; Graudenz, M. Memory facilitation by naloxone is due to release of dopaminergic and beta-adrenergic systems from tonic inhibition. Psychopharmacology. Vol. 67. 1980. p. 265-268.

-Jeckel-Neto, E. A. Restrição de dieta e longevidade. In: Clemente E, Jeckel-Neto, E. A (Org.). Aspectos biológicos e geriátricos do envelhecimento. Porto Alegre: Edipucrs. 2002.

-Kirk-Sanchez, N. J.; McGough, E. L. Physical exercise and cognitive performance in the elderly current perspectives. Clinical Interventions in Aging. Vol. 9. 2014. p. 51-62.

-Knauf, M. T.; Koltyn, K. F. Exercise-Induced Modulation of Pain in Adults With and Without Painful Diabetic Neuropathy. The Journal of Pain. Vol. 15. Num. 6. 2014. p. 656-663.

-Kramer, A. F.; Colcombe, S. J.; McAuley, E.; Scalf, P.E.; Erickson, K. I. Fitness, Aging and Neurocognitive Function. Neurobiology of Aging. Vol. 26. 2005. p. 124-127.

-Kuhla, A.; Lange, S.; Holzmann, C.; Maass, F.; Petersen, J.; Vollmar, B.; Wree, A. Lifelong Caloric Restriction Increases Working Memory in Mice. PLoS ONE. Vol. 8. Num. 7. 2013.

-Lelic, D.; Brock, C.; Søfteland, E.; Frøkjær, J. B.; Andresen, T.; Simrén, M. Drewes, A. M. Brain networks encoding rectal sensation in type 1 diabetes. Neuroscience. Vol. 237. 2013. p. 96-105.

-Lin, A.L.; Coman, D.; Jiang, L.; Rothman, D. L.; Hyder, F. Caloric restriction impedes age-related decline of mitochondrial function and neuronal activity. Journal of Cerebral Blood Flow & Metabolism. Vol. 34. 2014. p. 1440-1443.

-Malone, J. I.; Hanna, S.; Saporta, S.; Mervis, R.F.; Park, C. R.; Chong, L.; Diamond, D. M. Hyperglycemia not hypoglycemia alters neuronal dendrites and impairs spatial memory. Pediatric Diabetes. Vol. 9. Num. 6. 2008. p. 527-530.

-Masaki, T.; Anan, F.; Shimomura, T.; Fujiki, M.; Saikawa, T.; Yoshimatsu, H. Association between hippocampal volume and serum adiponectin in patients with type 2 diabetes mellitus. Metabolism. Vol. 61. 2012. p. 1197-1200.

-Mello, P. B.; Benetti, F.; Cammarota, M.; Izquierdo, I. Effects of acute and chronic physical exercise and stress on different types of memory in rats An. Academia Brasileira de Ciências. Vol. 80. Num. 2. 2008.

-Mercken, E. M.; Carboneau, B. A.; Krzysik-Walker, S.M.; Cabo, R. Of Mice and Men: The Benefits of Caloric Restriction, Exercise, and Mimetics. Ageing Research Review. Vol. 11. Num. 3. 2012. p. 390-398.

-Moura, L. P.; Gurjão, A. L. D.; Jambassi Filho, J. C.; Mizuno, J.; Clara, S.; de Mello, M. A. R. Spirulina, exercício e controle da glicemia em ratos diabéticos. Arquivos Brasileiros de Endocrinologia e Metabologia. Vol. 56. 2012. p. 25-32.

-Murphy, T.; Dias, G.P.; Thuret, S. Effects of Diet on Brain Plasticity in Animal and Human Studies: Mind the Gap. Neural Plasticity. Vol. 2014. Num. 2. 2014.

-Parikh, I.; Guo, J.; Chuang, K. H.; Zhong, Y.; Rempe, R. G.; Hoffman, J. D.; Armstrong, R.; Bauer, B.; Hartz, A. M.; Lin, A. L. Caloric restriction preserves memory and reduces anxiety of aging mice with early enhancement of neurovascular functions. Research Paper. Vol. 8. Num. 11. 2016. p. 2814-2826.

-Rajab, E.; Alqanbar, B.; Naiser, M. J.; Abdulla, H. A.; Al-Momen, M. M.; Kamal, A. Sex differences in learning and memory following short-term dietary restriction in the rat. International Journal of Developmental Neuroscience. Vol. 36. 2014 p. 74-80.

-Reagen, L.P. Diabetes as a chronic metabolic stressor: causes, consequences and clinical complications. Experimental Neurology. Vol. 233. 2012. p. 68-78.

-Real,C. C.; Ferreira, A. F.; Hernandes, M. S.; Britto, L. R.; Pires, R. S. Exercise-induced plasticity of AMPA-type glutamate receptor subunits in the rat brain. Brain Research. Vol. 1363. 2010. p. 63-71.

-Reisi, P.; Alaei, H.; Babri, S.; Sharifi, M. R.; Mohaddes, G. Effects of treadmill running on spatial learning and memory in streptozotocin-induced diabetic rats. Neuroscience Letters. Vol. 455. Num. 2. 2009. p. 79-83.

-Santin, K.; da Rocha, R. F.; Cechetti. F.; Quincozes-Santos, A.; de Souza, D. F.; Nardin, P.; Rodrigues, L.; Leite, M.C.; Moreira, J.C.; Salbego, C.G.; Gonçalves, C. A. Moderate exercise training and chronic caloric restriction modulate redox status in rat hippocampus. Brain Research. Vol. 1421. 2011. p. 1-10.

-Schwabe, L. A.; Oliver, T.; Wolf, A.; Melly, S.; Oitzl, B. Memory formation under stress: Quantity and quality. Neuroscience and Biobehavioral Reviews. Vol. 34. 2010. p. 584-591.

-Schmolesky, M. T.; Webb, D. L.; Hansen, R. A. The effects of aerobic exercise intensity and duration on levels of brain-derived neurotrophic factor in healthy men. Journal of Sports Science and Medicine. Vol. 12. Num. 3. 2013. p. 502-511.

-Sharma R. Dietary restriction and its multifaceted effects. Current Science. Vol. 87. Num. 9. 2004. p. 1203-1210.

-Stranahan, A. M.; Lee, K.; Martin, B.; Maudsley, S.; Golden, E.; Cutler, R. G.; Mattson M. P. Voluntary exercise and caloric restriction enhance hippocampal dendritic spine density and BDNF levels in diabetic mice. Hippocampus. Vol. 19. Num. 10. 2009. p. 951-961.

-Winter, B.; Breitenstein, C.; Mooren, F. C.; Voelker, K.; Fobker, M.; Lechtermann, A.; Krueger, K.; Fromme, A.; Korsukewitz, C.; Floel, A.; Knecht S. High impact running improves learning. Neurobiology of Learning and Memory. Vol. 87. Num. 4. 2007. p. 597-609.

-Yau, S.; Gil-Mohapel, J.; Christie, B. R.; So, K. Physical Exercise-Induced Adult Neurogenesis: A Good Strategy to Prevent Cognitive Decline in Neurodegenerative Diseases? Biomed Research International. Vol. 2014. 2014.

Published
2018-02-06
How to Cite
Mezadri, T. J., & Ortolan, X. R. (2018). Evaluation of food and physical training on the memory and learning in diabetic rats. RBNE - Brazilian Journal of Sports Nutrition, 11(68), 1028-1035. Retrieved from https://www.rbne.com.br/index.php/rbne/article/view/955
Section
Scientific Articles - Original