Etiología de la fatiga muscular y acción de los alcaloides

  • Jardel Schlickmann Programa de Pós-Graduação Lato-Sensu da Universidade Gama Filho - Bases Nutricionais da Atividade Fí­sica: Nutrição Esportiva
  • Fabrizio Caputo Programa de Pós-Graduação Lato-Sensu da Universidade Gama Filho - Bases Nutricionais da Atividade Fí­sica: Nutrição Esportiva
Palabras clave: Fatiga muscular, Ejercicio físico, Alcaloides

Resumen

A lo largo de los años, se han atribuido múltiples definiciones y conceptos al fenómeno de la fatiga muscular (FM), que puede representar un fenómeno multifactorial caracterizado por la incapacidad para mantener una determinada intensidad de trabajo prescrita o por una disminución de la capacidad física, que se recupera después de un tiempo determinado. . En cierto sentido, los procesos que causan fatiga que se originan en la corteza y la médula espinal se definen como centrales, mientras que los procesos en los nervios periféricos, la unión neuromuscular y los músculos se definen como periféricos. Se ha utilizado una amplia gama de modelos experimentales, desde estudios in vitro hasta estudios in vivo, para comprender la etiología de la FM. Se han propuesto algunos mecanismos como posibles causas de la fatiga central, entre ellos: 1) el aumento de la concentración de metabolitos durante la actividad muscular intensa, como H+, K+, bradicinina, fosfato inorgánico, prostaglandinas; 2) una reducción en los niveles de glucosa en plasma; 3) aumento de la concentración plasmática de triptófano y 5-hidroxitriptófano (5-HT); 4) cambios termodinámicos y en la concentración de neurotransmisores. Podemos mencionar como algunos de los probables factores responsables de la fatiga periférica: 1) acumulación de potasio extracelular; 2) producción de H+; 3) acumulación de fosfato inorgánico; 4) formación de radicales libres. NaHCO3 se encuentra entre los alcaloides más estudiados en deportes con alta demanda de energía y alta producción de H+. Los estudios han demostrado un aumento en el rendimiento cuando se administran alcaloides, que a pesar de que la acidez favorece algunos mecanismos específicos a nivel celular, el mantenimiento del pH sigue siendo un factor crucial en la magnitud de la fatiga.

Citas

-Allen, D.G.; Lamb, G.D.; Westerblad, H. Skeletal muscle fatigue: cellular mechanisms. Physiological Reviews. Vol. 88. 2008. p. 287-332.

-Amann, M.; Runnels, S.; Morgan, D.E.; Trinity, J.D.; Fjeldstad, A.S.; Wray, D.W.; Reese, V.R.; Richardson, R.S. On the contribution of group III and IV muscle afferents to the circulatory response to rhythmic exercise in humans. Journal of Physiology. Vol. 589. 2011. p. 3855-3866.

-Ascensão, A.; Magalhães, J.; Oliveira, J.; Duarte, J.; Soares J. Fisiologia da fadiga muscular. Delimitação conceptual, modelos de estudo emecanismos de fadiga de origem central e periférica. Revista Portuguesa de Ciências do Desporto. Vol. 3. 2003. p. 108-123.

-Bangsbo, J.; Madsen, K.; Kiens, B.; Richter, E.A. Effect of muscle acidity on muscle metabolism and fatigue during intense exercise in man. Journal of Physiology. Vol. 495. 1996. p. 587-596.

-Barry, B. K.; Enoka, R. M. The neurobiology of muscle fatigue: 15 years later. Integrative and Comparative Biology. Vol. 47. 2007. p. 465-473.

-Bigland-Ritchie, B.; Dawson, N.J.; Johansson, R.S.; Lippold, O.C.J. Reflex origin for the slowing of motoneurone firing rates in fatigue of human voluntary contractions. Journal of Physiology. Vol. 379. 1986. p. 451-459.

-Bigland-Ritchie, B.; Kukulka, C.G.; Lippold, O.C.; Woods, J.J. The absence of neuromuscular transmission failure in sustained maximal voluntary contractions. Journal of Physiology. Vol. 330. 1982. p. 265-278.

-Bishop, D.; Edge, J.; Davis, C.; Goodman, C. Induced metabolic alkalosis affects muscle metabolism and repeated-sprintability. Medicine and Science in Sports & Exercise. Vol. 36. 2004. p. 807-813.

-Bishop, D.J.; Thomas, C.; Moore-Morris T.; Tonkonogi, M.; Sahlin, K.; Mercier, J. Sodium bicarbonate ingestion prior to training improves mitochondrial adaptations in rats.American Journal of Physiology and Endocrinology Metabolism. Vol. 299. 2010. p. 225-233.

-Borg, G. Perceived exertion: a note on history and methods. Medicine and Science in Sports & Exercise. Vol. 5. 1973. p. 90-93.

-Broch-Lips, M.; Overgaard, K.; Praetorius, H.A.; Nielsen, O.B. Effects of extracellular HCO3 on fatigue, pHi, and K efflux in rat skeletal muscles. Journal of Applied Physiology. Vol. 103. 2007. p. 494-503.

-Cady, E.B.; Jones, D.A.; Lynn, J.; Newham, D.J. Changes in force and intracellular metabolites during fatigue of human skeletal muscle. Journal of Physiology. Vol. 418. 1989. p.311–325.

-Cairns, S.P. Lactic acid and exercise performance: culprit or friend? Vol. 36. 2006. p. 279-291.

-Caremani, M.; Dantzig, J.; Goldman, Y.E.; Lombardi, V.; Linari, M. Effect of inorganic phosphate on the force and number of myosin cross-bridges during the isometric contraction of permeabilized muscle fibers from rabbit psoas. Biophysical Journal. Vol. 95. 2008. p. 5798-5808.

-Chase, P.B.; Kushmerick, M.J. Effects of pH on contraction of rabbit fast and slow skeletal muscle fibers. Biophysical Journal. Vol. 53. 1988 p. 935-946.

-Clausen, T.; Nielsen, O.B. Potassium, Na+,K+-pumps and fatigue in rat muscle. Journal of Physiology. Vol. 584. 2007. p. 295-304.

-Cresswell, A.G.; Thorstensson, A. Central fatigue during a long-lasting submaximal contraction of the triceps surae. Experimental Brain Research. v. 108. 1996. p. 305-314.

-Di Giulio, C.; Daniele, F.; Tipton T.M. Angelo Mosso and muscular fatigue: 116 years after the first congress of physiologists: IUPS commemoration. Advanced in Physiology Education. Vol. 30. 2006. p. 51-57.

-Dousset, E.; Decherchi, P.; Grelot, L.; Jammes, Y. Effects of chronic hypoxemia on the afferent nerve activities from skeletal muscle. American Journal Respiration Critical Care Medicine. Vol. 164. 2001. p. 1476–1480.

-Edwards, R.H. Human muscle function and fatigue. Ciba Foundation Symposium. Vol. 82. 1981. p. 1-18.

-Enoka, R.M.; Stuart, D.G. Neurobiology of muscle fatigue. Journal of Applied Physiology. Vol. 72. 1992. p.1631-1648.

-Fabiato, A.; Fabiato, F. Effects of pH on the myofilaments and the sarcoplasmic reticulum of skinned cells from cardiac and skeletal muscles. Journal of Physiology. Vol. 276. 1978. p. 233-255.

-Galloway, S.D.; Maughan, R.J. The effects of induced alkalosis on themetabolic response to prolonged exercise in humans. European Journal of Applied Physiology. Vol. 74. 1996. p. 384-389.

-Gandevia, S. C.; Enoka, R. M.; Mc Comas, A. J.; Stuart, D. G.; Thomas, C. K. Fatigue: Neural and Muscular Mechanisms. New York: Plenum Press, 1995.

-Gandevia, S.C. Spinal and supraspinal factors in human muscle fatigue. Physiological Reviews. Vol.81. 2001. p. 1725-1789.

-Gandevia, S.C.; Allen, G.M.; Butler, J.E.; Taylor, J.L. Supraspinal factors in humanmuscle fatigue: evidence for suboptimal output from the motor cortex. Journal of Physiology. Vol. 490. 1996. p. 529-536.

-Garland, S.J.; Kaufman, M.P. Role of muscle afferents in the inhibition of motoneurons during fatigue. Advanced Experimental Medicine Biology. Vol. 384. 995. p. 271-278.

-Ge, W.; Khalsa, P.S. Encoding of compressive stress during indentation by group III and IV muscle mechano-nociceptors in rat gracilis muscle. Journal of Neurophysiology. Vol.89. 2003. p. 785-792.

-Goodwin, G.M.; McCloskey, D.I.; Mitchell, J.H. Cardiovascular and respiratory responses to changes in central command during isometric exercise at constant muscle tension. Journal of Physiology. Vol. 226. 1972. p.173–190.

-Green, H. Metabolic determinants of activity induced muscular fatigue. Exercise Metabolism. Human Kinetics. 1995. p. 221-256.

-Hawley, J.A.; Myburgh, K.H.; Noakes, T.D.; Dennis, S.C. Training techniques to improve fatigue resistance and enhance endurance performance. Journal of Sports Science. Vol. 15. 1997. p. 325-333.

-Hollidge-Horvat, M.G.; Parolin, M.L.; Wong D.; Jones, N.L.; Heigenhauser, G.J.F. Effect of induced metabolic alkalosis on human skeletal muscle metabolism during exercise. American Journal of Physiology -Endocrinology Metabolism. Vol. 278. 2000. p. 316-329.

-Juel, C. Lactate-proton co-transport in skeletal muscle. Physiological Reviews. Vol. 77. 1997. p. 321-358.

-Juel, C.; Halestrap, A.P. Lactate transport in skeletal muscle—role and regulation of the monocarboxylate transporter. Journal of Physiology. Vol. 517. 1999. p. 633–642.

-Juel, C.; Pilegaard, H.; Nilesen, J.J.; Bangsbo, J. Interstitial K(+) in human skeletal muscle during and after dynamic graded exercise determined by microdialysis. American Journal of Physiology. Vol. 278. 2000. p. 400-406.

-Kaufman, M.; Iwamoto, G.; Longhurst, J.; Mitchell, J. Effect of capsaicin and bradykinin on afferent fibers with endings in skeletal muscle. Circulation Research. Vol. 50. 1982. p. 133-139.

-Kaufman, M.; Rybicki, K. Discharge properties of group III and IV muscle afferents: their responses to mechanical and metabolic stimuli. Circulation Research. Vol. 61. 1987. p. 60–65.

-Kaufman, M.P. Control of breathing during dynamic exercise by thin fiber muscle afferents. Journal of Applied Physiology. Vol. 109. 2010. p. 947-948.

-Keml, L.D.; Engen, R.L. Effects of NaHCO3 loading on acid-base balance, lactate concentration, and performance in racing greyhounds. Journal of Applied Physiology. Vol. 85. 1998. p.1037-1043.

-Kolkhorst, F.W.; Rezende, R.S.; Levy, S.S.; Buono, M.J. Effects ofSodium Bicarbonate on [latin capital V with dot above] O2 Kinetics during Heavy Exercise. Medicine & Science in Sports & Exercise. Vol. 36. 2004. p. 1895-1899.

-Lamb, G.D. Excitation–contraction coupling and fatigue mechanisms in skeletal muscle: studieswith mechanically skinned fibres. Journal Muscle Research and Cell Motility. Vol. 23. 2002. p. 81-91.

-Lannergren, J.; Westerblad, H. The temperature dependence of isometric contractions of single, intact fibres dissected from a mouse foot muscle. Journal of Physiology. Vol. 390. 1987. p. 285-293.

-Lavander, G.; Bird, S.R. Effect of sodium bicarbonate ingestion upon repeated sprints. British Journal Sports Medicine. Vol. 23. 1989. p. 41-45.

-Lindinger, M.I.; Heigenhauser, G.J.F.; Spriet, L.L. Effects of alkalosis on muscle ions at rest and with intense exercise. Canadian Journal Physiology Pharmacology. Vol. 68. 1990. p. 820-829.

-Lindinger, M.I.; Kowalchuk, J.M.; Heigenhauser, G.J. Applying physicochemical principles to skeletal muscle acid-base status. American Journal of Physiology. Vol. 289. 2005. p. 891–894.

-Losher, W.N.; Cresswell, A.G.; Thorstensson, A. Central fatigue during a long-lasting submaximal contraction of the triceps surae. Experimental Brain Research. Vol. 108. 1996. p. 305-314.

-Marcora, S. Perception of effort during exercise is independent of afferent feedback from skeletal muscles, heart and lungs. Journal of Applied Physiology. Vol. 106. 2009. p. 2060-2062.

-Marcora, S.M. Role of feedback from Group III and IV muscle afferents in perception of effort, muscle pain, and discomfort. Journal of Applied Physiology. Vol. 110. 2011. p. 1499.

-Martin, P.G.; Weerakkody, N.; Gandevia, S.C.; Taylor, J.L. Group III and IV muscle afferents differentially affect the motor cortex and motorneurones in humans. Journal of Physiology. Vol. 586. 2008. p. 1277-1289.

-McKenna, M.J.; Medved, I.; Goodman, C.A.; Brown, M.J.; Bjorksten, A.R.; Murphy, K.T.; Petersen, A.C.; Sostaric, S.; Gong, X. N-acetylcysteine attenuates the decline in muscle Na+K+-pump activity and delays fatigue during prolonged exercise in humans. Journal of Physiology. Vol. 576. 2006. p. 279-288.

-McMurray, R.G.; Tenan, M.S. Relationship of potassium ions and blood lactate to ventilation during exercise.Applied Physiology Nutrition Metabolism. Vol. 35. 2010. p. 691-698.

-Medved, I.; Brown, M.J.; Bjorksten, A.R.; Leppik, J.A.; Sostaric, S.; Mckenna, M.J. N-acetylcysteine infusion alters blood redox status but not time to fatigue during intense exercise in humans. Journal of Applied Physiology. Vol. 94. 2003. p. 1572-1582.

-Mense, S.; Meyer, H. Bradykinin-induced modulation of the response behaviour of different types of feline group III and IV muscle receptors. Journal of Physiology. Vol. 398. 1988. p. 49-63.

-Mitchell, J.H.; Kaufman, M.P.; Iwamoto, G.A. The exercise pressor reflex: its cardiovascular effects, afferent mechanisms, and central pathways. Annual Review Physiology. Vol. 45. 1983. p. 229-242.

-Newsholme, E.A.; Blomstrand, E. Branched-Chain Amino Acids and Central Fatigue. The Journal of Nutrition. supplement. 2006. p. 0022-3166.

-Nicol, C.; Kuitunen, S.; Kyrolainen, H.; Avela, J.; Komi, P.VOL. Effects of long-and short-term fatiguing stretch-shortening cycle exercises on reflex EMG and force of the tendon-muscle complex. European Journal of Applied Physiology. Vol. 90. 2003. p. 470-479.

-Nielsen, H.B.; Hein, L.; Svendsen, L.B.; Secher, N.H.; Quistorff, B. Bicarbonate attenuates intracellular acidosis. Acta Anaesthesiologica Scandinavica. Vol. 46. 2002. p. 579-584.

-Nielsen, O.B.; De Paoli, F.; Overgaard, K. Protective effects of lactic acid on force production in rat skeletal muscle. Journal of Physiology. Vol. 536. 2001. p. 161-166.

-Nielsen, O.B.; Overgaard, K. Point:Counterpoint authors respond to commentaries on ‘Lactic acid accumulation is an advantage/disadvantage during muscle activity’. Journal of Physiology. Vol. 101. 2006. p. 367.

-Nordlund, M.M.; Thorstensson, A.; Cresswell, A.G. Central and peripheral contributionsto fatigue in relation to level of activation during repeated maximal voluntary isometric plantar flexions. Journal of Applied Physiology. Vol. 96. 2004. p. 218-225.

-Nybo, L.; Secher, N.H. Cerebral perturbations provoked by prolonged exercise. Vol. 72. 2004. p. 223-261.

-Paintal, A. Functional analysis of group III afferent fibers of mammalian muscles. Journal of Physiology. Vol. 152. 1960. p. 250–270.

-Peart, D.J.; Mcnaughton, L.R.; Midgley, A.W.; Taylor, L.; Towlson, C.; Madden, L.A.; Vince, R.V. Pre-exercise alkalosis attenuates the heat shock protein 72 response to a single-bout of anaerobic exercise. Journal of Science and Medicine Sports. Vol. 14. 2011. p. 435-440.

-Péronnet F.; Meyer, T.; Aguilaniu, B.; Juneau, C.E.; Faude, O.; Kindermann, W. Bicarbonate infusion and pH clamp moderately reduce hyperventilation during ramp exercise in humans. Journal of Applied Physiology. Vol. 102. 2007. p. 426-428.

-Place, N.; Yamada, T.; Bruton, J.D.; Westerblad, H. Muscle fatigue: from observations in humans to underlying mechanisms studied in intact single muscle fibres. European Journal of Applied Physiology. Vol. 110. 2010. p. 1-15.

-Ranatunga, K.W. Effects of acidosis on tension development in mammalian skeletal muscle. Muscle and Nerve.Vol. 10. 1987. p. 439-445.

-Reid, M.B.; Stokic, D.S.; Koch, S.M.; Khawli, F.A.; Leis, A.A. N-acetylcysteine inhibits muscle fatigue in humans. Journal of Clinical Investigation. Vol. 94. 1994. p. 2468-2474.

-Ristow, M.; Zarse, K.; Oberbach, A.; Kliting, N.; Birringer, M.; Kiehntopf, M.; Stumvoll, M.; Kahn, C.R.; Bluher, M. Antioxidants prevent health-promoting effects of physical exercise in humans. Vol. 26. 2009. p. 106-121.

-Rotto, D.; Kaufman, M. Effect of metabolic products of muscular contraction on discharge of group III and IV afferents. Journal of Applied Physiology. Vol. 64. 1988. p. 2306-2313.

-Rybicki, K.; Kaufman, M. Stimulation of group III and IV muscle afferents reflexly decreases total pulmonary resistance in dogs. Respiration Physiology, Vol. 59, 1985. p. 185-195.

-Siegler, J.C.; Hirscher, KJ. Sodium bicarbonate ingestion and boxing performance. Journal of Strength and Conditioning Research. Vol. 24. 2010. p. 103-108.

-Sostaric, S.M.; Skinner, S.L.; Brown, M.J.; Sangkabutra, T.; Medved, I.; Medley, T.; Selig, S.E.; Fairweather, I.; Rutar, D.; Mckenna, M.J. Alkalosis increases muscle K+ release, but lowers plasma [K+] and delays fatigue during dynamic forearm exercise. Journal of Physiology. Vol. 570. 2006. p. 185-205.

-Spriet, L.L.; Lindinger, M.I.; Mckelvie, R.S.; Heigenhauser, G.J.; Jones, N.L. Muscle glycogenolysis and H+ concentration during maximal intermittent cycling. Journal of Applied Physiology. Vol. 66. 1989. p. 8-13.

-Stackhouse, S.; Dean, J.; Lee, S.; Binder-Mcload, S. Measurment of central activation failure of the quadriceps femoris in healthy adults. Muscle and Nerve. Vol. 23. 2000. p. 1706-1712.

-Stebbins, C.; Maruoka, Y.; Longhurst, J. Prostaglandins contribute to cardiovascular reflexes evoked by static muscular contraction. Circulation Research. Vol. 59. 1986. p. 645-654.

-Street, D.; Nielsen, J.J.; Bangbo, J.; Juel, C. Metabolic alkalosis reduces exercise-induced acidosis and potassium accumulation in human skeletal muscle interstitium. Journal of Physiology. Vol. 566. 2005. p.478-489.

-Sutton, J.R.; N.L. Jones.; Toewk, C.J.Effect of pH on muscle glycolysis during exercise. Clinical Science. Vol. 61. 1981. p. 331-338.

-Taylor, J.L.; Allen, G.M.; Butler,, J.E.; Gandevia, S.C. Supraspinal fatigue during intermittent maximal voluntary contractions of the human elbow flexors. Journal of Applied Physiology. Vol. 89. 2000. p. 305-313.

-Thomas, C.; Perrey S.; Lambert K.; Hugon G., Mornet D., Mercier J. Monocarboxylate transporters, blood lactate removal after supramaximal exercise, and fatigue indexes in humans. Journal of Applied Physiology. Vol. 98. 2005. p. 804-809.

-Verbitsky O.; Mizrahi J.; Levin M.; Isakov E. Effect of ingested sodium bicarbonate on muscle force, fatigue, and recovery. Journal of Applied Physiology. Vol. 83. 1997. p. 333-337.

-Vollestad, N.K.; Sejerrsted, O.M. Biochemical correlates of fatigue. A brief review. European Journal of Applied Physiology and Occupational Physiology. Vol. 57. 1988. p. 336-347.

-Westerblad, H.; Allen, D.G. The effects of intracellular injections of phosphate on intracellular calcium and force in single fibres of mouse skeletal muscle. Pfluagers Arch. Vol. 431. 1996. p. 964-970.

-Westerblad, H.; Bruton, J.D.; Lannergren, J.The effect of intracellular pH on contractile function of intact, single fibres of mouse muscle declines with increasing temperature. Journal of Physiology. Vol. 500. 1997. p. 193-204.

-Wiles, J.; Robbins, J. The effect of sodium bicarbonate ingestion on 1500-m racing time. Journal of Sports Sciences. Vol.13. 1995. p. 399-403.

-Williamson, J.W. The relevance of central command for the neural cardiovascular control of exercise. Experimental Physiology. Vol. 95. 2010. p. 1043-1048.

-Zajac, A.; Cholewa , J.; Poprzecki, S.; Waskiewicz, Z.; Langfort, J. Effects of sodium bicarbonate ingestion on swim performance in youth athletes. Journal of Sports Science and Medicine. Vol. 8. 2009. p. 45-50.

Publicado
2012-04-18
Cómo citar
Schlickmann, J., & Caputo, F. (2012). Etiología de la fatiga muscular y acción de los alcaloides. RBNE - Revista Brasileña De Nutrición Deportiva, 6(31). Recuperado a partir de https://www.rbne.com.br/index.php/rbne/article/view/190
Sección
Artículos Científicos - Original