Suplementación con ß-alanina en entrenamiento cruzado
Resumen
El objetivo del presente estudio fue evaluar el potencial ergogénico, además de comprender el proceso por el cual la suplementación con beta-alanina podría influir en el rendimiento en el ámbito del entrenamiento cruzado. Así, este estudio presenta una síntesis crítica de la literatura, explicando las demandas fisiológicas y metabólicas de este tipo de entrenamiento, analizando la plausibilidad biológica y el grado de evidencia científica que justificaría (o no) el consumo por parte de deportistas o practicantes de la modalidad. Para el presente análisis se utilizaron enfoques cualitativos y técnicas de bola de nieve, basados en libros, publicaciones periódicas y artículos científicos, tesis doctorales y de maestría indexados en las bases de datos Google Academic, Scielo, Pubmed. En los estudios evaluados, dosis de ß-alanina entre 3,2 a 6,4 g/día fueron eficaces en ejercicios de corta duración y alta intensidad (superiores al 60% del VO2 máx). Además, los estudios muestran potencial ergogénico para disminuir el tiempo en protocolos específicos, aumentar la potencia media, la potencia pico y aumentar el volumen de entrenamiento en modalidades como ciclismo, fuerza, remo, carrera a pie (400 a 1500 m) y natación, que son modalidades presentes en el entrenamiento cruzado. protocolos El principal efecto secundario de la beta alanina fue la parestesia, que se minimizó en los estudios donde hubo una disminución de la dosis total a dosis equivalentes de 10 mg/kg, a intervalos de 3 horas. Estudios posteriores deberían probar la suplementación con ß-alanina en protocolos específicos, con el objetivo de confirmar estas hipótesis, así como mostrar la magnitud del efecto de la suplementación.
Citas
-Artioli, G. G.; Painelli, V. D. S.; Gualano, B. Suplementação de B-alanina: fundamentos fisiológicos e aplicações para o exercício, esporte e saúde. Clanad. 2019. p. 69-99.
-Baguet, A.; Bourgois, J.; Vanhee, L.; Achten, E.; Derave, W. Important role of muscle carnosine in rowing performance. J Appl Physiol. Vol. 109. Núm 4. 2010. p. 1096-1101. 2010. https://pubmed.ncbi.nlm.nih.gov/20671038
-Bellinger, P. M.; Howe, S. T.; Shing, C. M.; Fell, J. W. Effect of combined ß-alanine and sodium bicarbonate supplementation on cycling performance. Medicine & Science in Sports & Exercise. Vol. 44. Núm. 8. 2012. p. 1545-1551. https://pubmed.ncbi.nlm.nih.gov/22330016
-Broch-Lips, M.; Overgaard, K.; Praetorius, H. A.; Nielsen, O. B. Effects of extracellular hco3- on fatigue, ph i, and k+ efflux in rat skeletal muscles. Journal of Applied Physiology. Vol. 103. Núm. 2. p. 494-503. 2007. https://pubmed.ncbi.nlm.nih.gov/17446415
-Chung, W.; Shaw, G.; Anderson, M. E.; Pyne, D. B.; Saunders, P. U.; Bishop, D. J.; Burke, L. M. Effect of 10-week beta-alanine supplementation on competition and training performance in elite swimmers. Nutrients. Vol. 4. Núm. 10. p. 1441-1453. 2012. https://pubmed.ncbi.nlm.nih.gov/23201763
-Chung, W.; Baguet, A.; Bex, T.; Bishop, D. J.; Derave, W. Doubling of muscle carnosine concentration does not improve laboratory 1-hr cycling time-trial performance. Int J Sport Nutr Exerc Metab. Vol. 24. Num. 3. p. 315-324. 2014. https://pubmed.ncbi.nlm.nih.gov/24457999
-Crossfit. 2007 Reload. De 22 de outubro de 2020. California do Norte. 2020. https://Games.Crossfit.Com/Workouts/Games/2020#Events-Details
-Danaher, J.; Gerber, T.; Wellard, R. M.; Stathis, C. G. The effect of β-alanine and NaHCO3 co-ingestion on buffering capacity and exercise performance with high-intensity exercise in healthy males. Eur J Appl Physiol. Vol. 114. Núm. 8. p. 1715-1724. 2014. https://pubmed.ncbi.nlm.nih.gov/24832191/
-Derave, W.; Ozdemir, M.S.; Harris, R.C.; Pottier, A.; Reyngoudt, H.; Koppo, K.; Wise, J.A.; Achten, E. Beta-Alanine supplementation augments muscle carnosine content and attenuates fatigue during repeated isokinetic contraction bouts in trained sprinters. J Appl Physiol. Vol. 103. Núm. 5. p. 1736-1743. 2007. https://pubmed.ncbi.nlm.nih.gov/17690198
-Ducker, K. J.; Dawson, B.; Wallman, K. E. Effect of Beta-Alanine Supplementation on 2000-M Rowing-Ergometer Performance. Int J Sport Nutr Exerc Metab. Vol. 23. Núm. 4. p. 336-343. 2013. https://pubmed.ncbi.nlm.nih.gov/23239676
-Ducker, K. J.; Dawson, B.; Wallman, K. E. Effect of Beta-Alanine Supplementation on 800-M Running Performance. Int J Sport Nutr Exerc Metab. Vol. 23. Núm. 6. p. 554-561. 2013. https://pubmed.ncbi.nlm.nih.gov/23630039
-Eather, N.; Morgan, P. J.; Lubans, D. R. Effects of Exercise on Mental Health Outcomes In Adolescents Dofindings From The Crossfit Tm Teens Randomized Controlled Trial. Psychology of Sport & Exercise. Vol. 26. p. 14-23. 2016.
-Eather, N.; Morgan, P. J.; Lubans, D. R. Improving Health-Related Fitness In Adolescents Dothe Crossfit Teens Tm Randomised Controlled Trial. Journal of Sports Sciences. Vol. 34. Núm. 3. p. 209-223. 2016. https://pubmed.ncbi.nlm.nih.gov/25972203/
-Eijsvogels, T. M. H.; Fernandez, A. B.; Thompson, P. D. Are there deleterious cardiac effects of acute and chronic endurance exercise? Physiological Reviews. Vol. 96. Núm. 1. p. 99-125. 2016. https://pubmed.ncbi.nlm.nih.gov/26607287/
-Everaert, I.; Mooyaart, A.; Baguet, A.; Zutinic, A.; Baelde, H.; Achten, E.; Taes, Y.; De Heer, E.; Derave, W. Vegetarianism, Female Gender and Increasing Age, But Not Cndp1 Genotype Are Associated With Reduced Muscle Carnosine Levels In Humans. Amino Acids. Vol. 40. Núm. 4. p. 1221-1229. 2011. https://pubmed.ncbi.nlm.nih.gov/20865290/
-Fisker, F. Y.; Kildegaard, S.; Thygesen, M.; Grosen, K. Acute Tendon Changes In Intense Crossfit Workout Oran Observational Cohort Study. Scand J Med Sci Sports. Vol. 27. Núm. 11. p. 1-5. 2016. https://pubmed.ncbi.nlm.nih.gov/27714843
-Fitts, R. H. The Cross-Bridge Cycle and Skeletal Muscle Fatigue. Journal of Applied Physiology. Vol. 104. Núm. 2. p. 551-558. 2008.
-Fitts, R. H. The role of acidosis in fatigue: pro perspective. Medicine and Science In Sports and Exercise. Vol. 48. Núm. 11. p. 2335-2338. 2016. https://pubmed.ncbi.nlm.nih.gov/27755382
-Gastin, P. Energy System Interaction and Relative Contribution During Maximal Exercise. Sports Medicine. Vol. 31. Núm. 10. p. 725-741. 2001. https://pubmed.ncbi.nlm.nih.gov/11547894
-Geers, C.; Gross, G. Carbon dioxide transport and carbonic anhydrase in blood and muscle. Physiological Reviews. Vol. 80. Núm. 2. p. 681-715. 2000. https://pubmed.ncbi.nlm.nih.gov/10747205
-Grier, T.; Canham-Chervak, M.; McNulty, V.; Jones, B. H. Extreme conditioning programs and injury risk in a US Army Brigade Combat Team. U.S. Army Medical Department journal. p. 36-47. 2013. https://pubmed.ncbi.nlm.nih.gov/24146241
-Harris, R. C.; Tallon, M. J.; Dunnett, M.; Boobis, L.; Coakley, J.; Kim, H. J. The Absorption of Orally Supplied B -Alanine and Its Effect on Muscle Carnosine Synthesis In Human Vastus Lateralis. Amino Acids. Vol. 30. Núm. 3. p. 279-289. 2006.
-Heinrich, K. M.; Becker, C.; Carlisle, T.; Gilmore, K.; Hauser, J.; Frye, J.; Euro-, Harms C. A. High-intensity functional training improves functional movement and body composition among cancer survivors: a pilot study. European journal of cancer care. Vol. 24. Núm. 6. p. 812-817. 2015. https://pubmed.ncbi.nlm.nih.gov/26094701
-Heinrich, K. M.; Patel, P. M.; Neal, J. L. O.; Heinrich, B. S. High-intensity compared to moderate-intensity training for exercise initiation, enjoyment, adherence, and intentions: an intervention study. BMC Public Health. Vol. 14. Núm. 789. p. 1-6. 2014. https://bmcpublichealth.biomedcentral.com/articles/10.1186/1471-2458-14-789
-Hill, C. A.; Harris, R. C.; Kim, H. J.; Harris, B. D.; Sale, C.; Boobis, L. H.; Kim, C. K.; Wise, J. A. Influence of Β-Alanine Supplementation on Skeletal Muscle Carnosine Concentrations and High Intensity Cycling Capacity. Amino Acids. Vol. 32. Núm. 2. p. 225-233. 2007. https://pubmed.ncbi.nlm.nih.gov/16868650
-Hirakoba, K. Buffering Capacity In Human Skeletal Muscle: A Brief Review. Dissertação. Departamento de Ciências Humanas da Faculdade de Ciência da Computação e Engenharia de Sistemas. Instituto de Tecnologia de Kyushu. Kawazu. 1999. https://core.ac.uk/download/pdf/147422562.pdf
-Hobson, R. M.; Saunders, B.; Ball, G.; Harris, R. C.; Sale, C. Effects of Β-Alanine Supplementation on Exercise Performance: A Meta-Analysis. Amino Acids. Vol. 43. Núm. 1. p. 25-37. 2012. https://pubmed.ncbi.nlm.nih.gov/22270875
-Hobson, R. M.; Harris, R. C.; Martin, D.; Smith, P.; Macklin, B.; Gualano, B.; Sale, C. Effect of Beta-Alanine With and Without Sodium Bicarbonate on 2000-M Rowing Performance. International journal of sport nutrition and exercise metabolism. Vol. 23. Núm. 5. p. 480-487, 2013. https://pubmed.ncbi.nlm.nih.gov/23535873
-Hoffman, J.; Ratamess, N. A.; Ross, R.; Kang, J.; Magrelli, J.; Neese, K.; Faigenbaum, A. D.; Wise, J. A. Beta-alanine and the hormonal response to exercise. International journal of sports medicine. Vol. 29. Núm. 12. p. 952-958. 2008. https://pubmed.ncbi.nlm.nih.gov/18548362
-Howe, S. T.; Bellinger, P. M.; Driller, M. W.; Shing, C. M.; Fell, J. W. The Effect of Beta-Alanine Supplementation on Isokinetic Force and Cycling Performance In Highly Trained Cyclists. International journal of sport nutrition and exercise metabolism. Vol. 26. Núm. 3. p. 562–570. 2013. https://pubmed.ncbi.nlm.nih.gov/23630052
-Jagim, A. R.; Wright, G. A.; Brice, A. G. Effects of Beta-Alanine Supplementation on Sprint Endurance. Journal of Strength and Conditioning Research. Vol. 27. Núm. 2. p. 526-532. 2013. https://pubmed.ncbi.nlm.nih.gov/22476168
-James, R. M.; Cooper, S. B.; Martin, D.; Harris, R. C.; Sale, C. Effect of Β -Alanine Supplementation on 20 Km Cycling Time Trial Performance. Vol. 28. Núm. 3. p. 395-403. 2014.
-Juel, C. Regulation of Ph In Human Skeletal Muscle: Adaptations To Physical Activity. Acta Physiol (Oxf). Vol. 193. Núm. 1. p. 17-24. 2008. https://pubmed.ncbi.nlm.nih.gov/18267000
-Kliszczewicz, B.; John, C.; Daniel, L.; Gretchen, D.; Michael, R.; Kyle, J. Acute Exercise and Oxidative Stress: CrossFit(™) vs. Treadmill Bout. Journal of human kinetics. Vol. 47. p. 81-90. 2015. https://pubmed.ncbi.nlm.nih.gov/26557192
-Kliszczewicz, B.; Williamson, C.; Bechke, E.; Mckenzie, M. Autonomic response to a short and long bout of high-intensity functional training. Journal of Sports Sciences, Vol. 36. Núm. 16. p. 1-8. 2018. https://pubmed.ncbi.nlm.nih.gov/29308709
-Heavens, K. R.; Szivak, T. K.; Hooper, D. R.; Dunn-Lewis, C.; Comstock, B. A.; Flanagan, S. D.; Looney, D. P.; Kupchak, B. R.; Maresh, C. M.; Volek, J. S.; Kraemer, W. J. The Effects of High Intensity Short Rest Resistance Exercise on Muscle Damage Markers In Men and Women. Journal of strength and conditioning research. Vol. 28. Núm. 4. p. 1041-1049. 2014. https://pubmed.ncbi.nlm.nih.gov/24662155
-Lancha Junior, A. H.; Painelli, V.; Saunders, B.; Artioli, G. G. Nutritional Strategies to Modulate Intracellular and Extracellular Buffering Capacity During High-Intensity Exercise. Sports medicine. Vol. 45. Núm. 1. p. 71-81. 2015. https://pubmed.ncbi.nlm.nih.gov/26553493
-Liu, Q.; Sikand, P.; Ma, C.; Tang, Z.; Han, L.; Li, Z.; Sun, S.; LaMotte, R. H.; Dong, X. Mechanisms of itch evoked by β-alanine. The Journal of neuroscience: the official journal of the Society for Neuroscience. Vol. 32. Núm. 42. p. 14532-14537. 2012. https://pubmed.ncbi.nlm.nih.gov/23077038/
-Martínez, B. J.; Gómez-Mármol, A. Percepción de esfuerzo, diversión y aprendizaje en alumnos de educación secundaria en las clases de Educación Física durante una Unidad Didáctica de CrossFit. SPORT TK-Revista EuroAmericana de Ciencias del Deporte. Vol. 4. Núm. 1. p. 63-67. 2015.
-Maté-Muñoz, J. L.; Lougedo, J. H.; Barba, M.; García-Fernández, P.; Garnacho-Castaño, M. V.; Domínguez, R. Muscular fatigue in response to different modalities of CrossFit sessions. PloSone. p. 1-17. 2017. https://pubmed.ncbi.nlm.nih.gov/28753624
-Mero, A. A.; Hirvonen, P.; Saarela, J.; Hulmi, J. J.; Hoffman, J. R.; Stout, J. R. Effect of Sodium Bicarbonate and Beta-Alanine Supplementation on Maximal Sprint Swimming. Journal of the International Society of Sports Nutrition. Vol. 10. Núm. 1. p. 1-9. 2013. https://pubmed.ncbi.nlm.nih.gov/24215679
-Nieuwoudt, S.; Fealy, C. E.; Foucher, J. A.; Scelsi, A. R.; Malin, S. K.; Pagadala, M.; Rocco, M.; Burguera, B.; Kirwan, J. P. Functional high-intensity training improves pancreatic β-cell function in adults with type 2 diabetes. American journal of physiology. Endocrinology and metabolism. Vol. 313. Núm. 3. 2017. https://pubmed.ncbi.nlm.nih.gov/28512155
-Powers, S. K.; Howley, T. E. Fisiologia do exercício: teoria e aplicação ao condicionamento e ao desempenho. 9ª edição. Barueri. 2017.
-Sale, C.; Saunders, B.; Hudson, S.; Wise, J. A.; Harris, R. C.; Sunderland, C. D. Effect of Β-Alanine Plus Sodium Bicarbonate on High-Intensity Cycling Capacity. Medicine and Science In Sports and Exercise. Vol. 43. Núm. 10. p. 1972-1978. 2011. https://pubmed.ncbi.nlm.nih.gov/21407127
-Saunders, B.; Elliott-Sale, K.; Artioli, G.G.; Swinton, P.; Dolan, E.; Roschel, H.; Sale, C.; Gualano, B. β-alanine supplementation to improve exercise capacity and performance: A systematic review and meta-analysis. British Journal of Sports Medicine. Vol. 51. Núm. 8. p. 658-669. 2017.
-Saunders, B.; Franchi, M.; Oliveira, L. F.; da Eira Silva, V.; da Silva, R. P.; de Salles Painelli, V.; Costa, L.; Sale, C.; Harris, R. C.; Roschel, H.; Artioli, G. G.; Gualano, B. 24-Week β-alanine ingestion does not affect muscle taurine or clinical blood parameters in healthy males. European journal of nutrition. Vol. 59. Núm. 1. 2020. https://pubmed.ncbi.nlm.nih.gov/30552505
-Saunders, B.; Sale, C.; Harris, R. C.; Morris, J. G.; Sunderland, C. Reliability of a high-intensity cycling capacity test. Journal of science and medicine in sport. Vol. 16. Núm. 3. p. 286–289. 2013. https://pubmed.ncbi.nlm.nih.gov/22884738
-Saunders, B.; Sale, C.; Harris, R. C.; Sunderland, C. Sodium Bicarbonate and High-Intensity-Cycling Capacity: Variability In Responses. International Journal of Sports Physiology and Performance. Vol. 9. Núm. 4. p. 627-632. 2014. https://pubmed.ncbi.nlm.nih.gov/24155093
-Silva, C. R. Q. Critérios para priorização de estudos primários identificados por snowballing com conjunto inicial gerado por string de busca. Dissertação de Mestrado. Universidade Federal de São Carlos. São Carlos. 2020.
-Stout, Jeffrey R.; Cramer, Joel T.; Mielke, Michelle; O’Kroy, Joseph; Torok, Don J.; Zoeller, Robert F. Effects of Twenty-Eight Days of Beta-Alanine and Creatine Monohydrate Supplementation on The Physical Working Capacity at Neuromuscular Fatigue Threshold. Journal of Strength and Conditioning Research. Vol. 20. Núm. 4. p. 928-931. 2006. https://pubmed.ncbi.nlm.nih.gov/17194255
-Sprey, J. W.; Ferreira, T.; Lima, M. V.; Duarte, A.; Jr, Jorge, P. B.; Santili, C. An Epidemiological Profile of Crossfit Athletes In Brazil. Orthopaedic journal of sports medicine. Vol. 4. Núm. 8. p. 1-8. 2015. https://pubmed.ncbi.nlm.nih.gov/27631016
-Stellingwerff, T.; Anwander, H.; Egger, A.; Buehler, T.; Kreis, R.; Decombaz, J.; Boesch, C. Effect of Two Β-Alanine Dosing Protocols on Muscle Carnosine Synthesis and Washout. Amino Acids. Vol. 42. Núm. 6. p. 2461-2472. 2012. https://pubmed.ncbi.nlm.nih.gov/21847611
-Tanaka, H. Effects of cross-training. Transfer of training effects on VO2max between cycling, running and swimming. Sports medicine. Vol. 18. Núm. 5. p. 330-339. 1994. https://pubmed.ncbi.nlm.nih.gov/7871294
-Tibana, R. A.; Almeida, L. M.; Frade de Sousa, N. M.; Nascimento, D.; Neto, I. V.; Almeida, J. A.; Souza, V. C.; Lopes, M.; Nobrega, O.; Vieira, D. C.; Navalta, J. W.; Prestes, J. Two Consecutive Days of Extreme Conditioning Program Training Affects Pro and Anti-Inflammatory Cytokines and Osteoprotegerin Without Impairments In Muscle. Vol. 7. p. 260. 2016. https://pubmed.ncbi.nlm.nih.gov/27445850
-Tibana, R. A.; Sousa, N. Are extreme conditioning programmes effective and safe? A narrative review of high-intensity functional training methods research paradigms and findings. BMJ open sport & exercise medicine. Vol. 4. Núm. 1. 2018. https://pubmed.ncbi.nlm.nih.gov/30498574
-Tobias, G.; Benatti, F. B.; Salles Painelli, V.; Roschel, H.; Gualano, B.; Sale, C.; Harris, R. C.; Lancha Junior, A. H.; Artioli, G. G. Additive effects of beta-alanine and sodium bicarbonate on upper-body intermittent performance. Amino acids. Vol. 45. Núm. 2. 2013. https://pubmed.ncbi.nlm.nih.gov/23595205
-Ward, J. K.; Hastie, P. A.; Wadsworth, D. D.; Foote, S.; Brock, S. J.; Hollett, N. A Sport Education Fitness Season’S Impact on Students’ Fitness Levels, Knowledge, and In-Class Physical Activity. Research Quarterly For Exercise and Sport. Vol. 88. Núm. 3. p. 1-6. 2017. https://pubmed.ncbi.nlm.nih.gov/28524725
-Van Thienen, R.; Van Proeyen, K.; Vanden Eynde, B.; Puype, J.; Lefere, T.; Hespel, P. Beta-alanine improves sprint performance in endurance cycling. Medicine and science in sports and exercise. Vol. 41. Núm. 4. p. 898-903. 2009. https://pubmed.ncbi.nlm.nih.gov/19276843
-Yamaguchi, G. C.; Nemezio, K.; Schulz, M. L.; Natali, J.; Cesar, J. E.; Riani, L. A.; Gonçalves, L. S.; Möller, G. B.; Sale, C.; DE Medeiros, M.; Gualano, B.; Artioli, G. G. Kinetics of Muscle Carnosine Decay after β-Alanine Supplementation: A 16-wk Washout Study. Medicine and science in sports and exercise. Vol. 53. Núm. 5. 2020. https://pubmed.ncbi.nlm.nih.gov/33148972
Derechos de autor 2022 Felipe de Almeida Lernic, Guilherme Giannini Artioli

Esta obra está bajo licencia internacional Creative Commons Reconocimiento-NoComercial 4.0.
Los autores que publican en esta revista aceptan los siguientes términos:
- Los autores conservan los derechos de autor y otorgan a la revista el derecho de la primera publicación, con el trabajo licenciado simultáneamente bajo una Creative Commons Attribution License BY-NC que permite compartir el trabajo con el reconocimiento de autoría del trabajo y la publicación inicial en esta revista.
- Los autores están autorizados a celebrar contratos adicionales por separado, para la distribución no exclusiva de la versión del trabajo publicado en esta revista (por ejemplo, publicar en un repositorio institucional o como capítulo de un libro), con reconocimiento de autoría y publicación inicial en esta revista.
- Se permite y se anima a los autores a publicar y distribuir su trabajo en línea (por ejemplo, en repositorios institucionales o en su página personal) en cualquier momento antes o durante el proceso editorial, ya que esto puede generar cambios productivos y aumentar el impacto y la cita del trabajo publicado (Consulte El Efecto del Acesso Abierto).