El impacto del consumo de alcohol en la recuperación muscular en hombres después del ejercicio físico: una revisión sistemática de ensayos controlados aleatorios

  • Henrique Subtil Sartori Acadêmico do Curso de Nutrição da Área do Conhecimento de Ciências da Vida (VIDA) da Universidade de Caxias do Sul (UCS), Caxias do Sul-RS, Brasil.
  • Adriane Rosa Costodio Acadêmica do Programa Especial de Graduação de Formação de Professores para a Educação Profissional da Universidade Federal de Santa Maria (UFSM), Santa Maria-RS, Brasil.
  • Karen Mello de Mattos Margutti Docente do Curso de Nutrição da Área do Conhecimento de Ciências da Vida (VIDA) da Universidade de Caxias do Sul (UCS), Caxias do Sul-RS, Brasil.
Palabras clave: Etanol, Ejercicio físico, Hombres, Músculo esquelético

Resumen

Introducción y objetivo: El ambiente deportivo expone al practicante al consumo frecuente de altas dosis de alcohol, generalmente después del ejercicio, lo que puede ser perjudicial para las adaptaciones fisiológicas del tejido muscular, afectando el rendimiento del deportista. Por tanto, este estudio tiene como objetivo evaluar, a través de una revisión sistemática, el impacto del consumo de alcohol en la recuperación muscular en hombres después del ejercicio físico. Materiales y métodos: Se trata de una revisión sistemática, realizada en agosto de 2023, en las bases de datos Pubmed y Lilacs. Se incluyeron ensayos clínicos con humanos masculinos, publicados en portugués, inglés o español, en los últimos diez años, correspondientes al período de 2013 a 2023; abordar la relación entre el consumo de alcohol y la masa muscular en deportistas masculinos. Los estudios seleccionados para la investigación utilizaron hombres adultos sanos y físicamente activos. Resultados: Se encontraron 397 artículos y de estos, sólo tres artículos quedaron para la revisión sistemática. El consumo de etanol osciló entre 0,88 y 1,5 g/kg de peso. El impacto sobre el músculo esquelético depende del ejercicio y la dosis de alcohol. En general, la ingesta aguda de alcohol después del ejercicio no afecta la potencia, la fuerza y ​​el dolor durante la recuperación, pero reduce las tasas de síntesis de proteínas musculares, la señalización mTOR, la autofagia y la biogénesis mitocondrial, perjudicando la adaptación muscular y el rendimiento a largo plazo. Conclusión: Se sugiere precaución con el consumo de alcohol después del ejercicio físico, buscando siempre los nutrientes necesarios para favorecer una adecuada recuperación.

Citas

-Areta, J.L.; Burke, L.M.; Ross, M.L.; Camera, D.M.; West, D.W.; Broad, E.M.; Jeacocke, N.A.; Moore, D.R.; Stellingwerff, T.; Phillips, S.M.; Hawley, J.A.; Coffey, V.G. Timing and distribution of protein ingestion during prolonged recovery from resistance exercise alters myofibrillar protein synthesis. The Journal of physiology. Vol. 591. Num. 9. 2013. p. 2319-2331.

-Areta, J.L.; Smiles, W.J.; Coffey, V.G.; Phillips, S.M.; Moore, D.R.; Stellingwerff, T.; Burke, L.M.; Hawley, J.A.; Camera, D.M. Modulation of autophagy signaling with resistance exercise and protein ingestion following short-term energy deficit. American journal of physiology. Regulatory, integrative and comparative physiology. Vol. 309. Num. 5. 2015. p. R603-R612.

-Barnes, M.J.; Mündel, T.; Stannard, S.R. A low dose of alcohol does not impact skeletal muscle performance after exercise-induced muscle damage. European journal of applied physiology. Vol. 111. Num. 4. 2011. p. 725-729.

-Barnes, M.J.; Mündel, T.; Stannard, S.R. Acute alcohol consumption aggravates the decline in muscle performance following strenuous eccentric exercise. Journal of science and medicine in sport. Vol. 13. Num. 1. 2010. p. 189-193.

-Barnes, M.J.; Mündel, T.; Stannard, S.R. Post-exercise alcohol ingestion exacerbates eccentric-exercise induced losses in performance. European journal of applied physiology. Vol. 108. Num. 5. 2010. p. 1009-1014.

-Barry, A.E.; Piazza-Gardner, A.K. Drunkorexia: understanding the co-occurrence of alcohol consumption and eating/exercise weight management behaviors. Journal of American college health : J of ACH. Vol. 60. Num. 3. 2012. p. 236-243.

-Babault, N.; Païzis, C.; Deley, G.; Guérin-Deremaux, L.; Saniez, M.H.; Lefranc-Millot, C.; Allaert, F.A. Pea proteins oral supplementation promotes muscle thickness gains during resistance training: a double-blind, randomized, Placebo-controlled clinical trial vs. Whey protein. Journal of the International Society of Sports Nutrition. Vol. 12. Num. 1. 2015. p. 3.

-Bootman, M.D.; Chehab, T.; Bultynck, G.; Parys, J.B.; Rietdorf, K. The regulation of autophagy by calcium signals: Do we have a consensus?. Cell calcium. Num. 70. 2018. p. 32-46.

-Cao, W.; Li, J.; Yang, K.; Cao, D. An overview of autophagy: Mechanism, regulation and research progress. Bulletin du cancer. Vol. 108. Num. 3. 2021. p. 304-322.

-Conrad, M.; McNamara, P.; King, A. Alternative substance paradigm: effectiveness of beverage blinding and effects on acute alcohol responses. Experimental and clinical psychopharmacology. Vol. 20. Num. 5. 2012. p. 382-389.

-Churchley, E.G.; Coffey, V.G.; Pedersen, D.J.; Shield, A.; Carey, K.A.; Cameron-Smith, D.; Hawley, J. A. Influence of preexercise muscle glycogen content on transcriptional activity of metabolic and myogenic genes in well-trained humans. Journal of applied physiology (Bethesda, Md. : 1985). Vol. 102. Num. 4. 2007. p. 1604-1611.

-Fader, C.M.; Aguilera, M.O.; Colombo, M.I. Autophagy response: manipulating the mTOR-controlled machinery by amino acids and pathogens. Amino acids. Vol. 47. Num. 10. 2015. p. 2101-2112.

-Ferguson-Stegall, L.; McCleave, E.L.; Ding, Z.; Doerner, P.G.; 3rd, Wang, B.; Liao, Y.H.; Kammer, L.; Liu, Y.; Hwang, J.; Dessard, B.M.; Ivy, J.L. Postexercise carbohydrate-protein supplementation improves subsequent exercise performance and intracellular signaling for protein synthesis. Journal of strength and conditioning research. Vol. 25. Num. 5. 2011. p. 1210-1224.

-Galvão, T.F.; Pansani, T.D.S.A.; Harrad, D. Principais itens para relatar Revisões sistemáticas e Meta-análises: A recomendação PRISMA. Epidemiologia e serviços de saúde. Num. 24. 2015. p. 335-342.

-Jang, M.; Park, R.; Kim, H.; Namkoong, S.; Jo, D.; Huh, Y.H.; Jang, I.S.; Lee, J.I.; Park, J. AMPK contributes to autophagosome maturation and lysosomal fusion. Scientific reports. Vol. 8. Num. 1. 2018. p. 12637.

-Jokl, E.J.; Blanco, G. Disrupted autophagy undermines skeletal muscle adaptation and integrity. Mammalian genome : official journal of the International Mammalian Genome Society. Vol. 27. Num. 11-12. 2016. p, 525-537.

-Kay, L.; Nicolay, K.; Wieringa, B.; Saks, V.; Wallimann, T. Direct evidence for the control of mitochondrial respiration by mitochondrial creatine kinase in oxidative muscle cells in situ. The Journal of biological chemistry. Vol. 275. Num. 10. 2000. p. 6937-6944.

-Kuznetsov, A.V.; Javadov, S.; Margreiter, R.; Grimm, M.; Hagenbuchner, J.; Ausserlechner, M.J. The Role of Mitochondria in the Mechanisms of Cardiac Ischemia-Reperfusion Injury. Antioxidants. Vol. 8. Num. 10. 2019. p. 454.

-Lang, C.H.; Frost, R.A.; Deshpande, N.; Kumar, V.; Vary, T.C.; Jefferson, L.S.; Kimball, S.R. Alcohol impairs leucine-mediated phosphorylation of 4E-BP1, S6K1, eIF4G, and mTOR in skeletal muscle. American journal of physiology. Endocrinology and metabolismo. Vol. 285. Num. 6. 2003. p. E1205-E1215.

-LaStayo, P.C.; Woolf, J.M.; Lewek, M.D.; Snyder-Mackler, L.; Reich, T.; Lindstedt, S.L. Eccentric muscle contractions: their contribution to injury, prevention, rehabilitation, and sport. The Journal of orthopaedic and sports physical therapy. Vol. 33. Num. 10. 2003. p. 557-571.

-Halson, S.L. Recovery Techniques for Athletes. Sports Science Exchange. Vol. 26. Num. 120. 2013. p. 1-6.

-Hood, D.A.; Memme, J.M.; Oliveira, A.N.; Triolo, M. Maintenance of Skeletal Muscle Mitochondria in Health, Exercise, and Aging. Annual review of physiology. Vol. 81. 2019. p. 19-41.

-Levitt, D.E.; Idemudia, N.O.; Cregar, C.M.; Duplanty, A.A.; Hill, D.W.; Vingren, J.L. Alcohol After Resistance Exercise Does Not Affect Muscle Power Recovery. Journal of strength and conditioning research. Vol. 34. Num. 7. 2020. p. 1938-1944.

-Lieber, C.S. Metabolism of alcohol. Clinics in liver disease. Vol. 9. Num. 1. 2005. p. 1-35.

-Martin-Rincon, M.; Pérez-López, A.; Morales-Alamo, D.; Perez-Suarez, I.; de Pablos-Velasco, P.; Perez-Valera, M.; Perez-Regalado, S.; Martinez-Canton, M.; Gelabert-Rebato, M.; Juan-Habib, J.W.; Holmberg, H.C.; Calbet, J.A.L. Exercise Mitigates the Loss of Muscle Mass by Attenuating the Activation of Autophagy during Severe Energy Deficit. Nutrients. Vol. 11. Num. 11. 2019. p. 2824.

-Mishra, P.; Chan, D.C. Metabolic regulation of mitochondrial dynamics. The Journal of cell biology. Vol. 212. Num. 4. 2016. p. 379-387.

-Moore, D.R.; Churchward-Venne, T.A.; Witard, O.; Breen, L.; Burd, N.A.; Tipton, K.D.; Phillips, S.M. Protein ingestion to stimulate myofibrillar protein synthesis requires greater relative protein intakes in healthy older versus younger men. The journals of gerontology. Series A, Biological sciences and medical sciences. 2015.

-Moore, D.R.; Robinson, M.J.; Fry, J.L.; Tang, J.E.; Glover, E.I.; Wilkinson, S.B.; Prior, T.; Tarnopolsky, M.A.; Phillips, S.M. Ingested protein dose response of muscle and albumin protein synthesis after resistance exercise in young men. The American journal of clinical nutrition. Vol. 89. Num. 1. 2009. p. 161-168.

-Moore, M.J.; Werch, C. Relationship between vigorous exercise frequency and substance use among first-year drinking college students. Journal of American college health: J of ACH. Vol. 56. Num. 6. 2008. p. 686-690.

-Nicklin, P.; Bergman, P.; Zhang, B.; Triantafellow, E.; Wang, H.; Nyfeler, B.; Yang, H.; Hild, M.; Kung, C.; Wilson, C.; Myer, V.E.; MacKeigan, J.P.; Porter, J.A.; Wang, Y.K.; Cantley, L.C.; Finan, P.M.; Murphy, L.O. Bidirectional transport of amino acids regulates mTOR and autophagy. Cell. Vol. 136. Num. 3. 2009. p. 521-534.

-Ozturk, D.G.; Kocak, M.; Akcay, A.; Kinoglu, K.; Kara, E.; Buyuk, Y.; Kazan, H.; Gozuacik, D. MITF-MIR211 axis is a novel autophagy amplifier system during cellular stress. Autophagy. Vol. 15. Num. 3. 2019. p. 375-390.

-Ogata, T.; Yamasaki, Y. Ultra-high-resolution scanning electron microscopy of mitochondria and sarcoplasmic reticulum arrangement in human red, white, and intermediate muscle fibers. The Anatomical record. Vol. 248. Num. 2. 1997. p. 214-223.

-Parr, E.B.; Camera, D.M.; Areta, J.L.; Burke, L.M.; Phillips, S.M.; Hawley, J.A.; Coffey, V.G. Alcohol ingestion impairs maximal post-exercise rates of myofibrillar protein synthesis following a single bout of concurrent training. PloS one. Vol. 9. Num. 2. 2014. p. e88384.

-Poulsen, M.B.; Jakobsen, J.; Aagaard, N.K.; Andersen, H. Motor performance during and following acute alcohol intoxication in healthy non-alcoholic subjects. European journal of applied physiology. Vol. 101. Num. 4. 2007. p. 513-523.

-Proske, U.; Morgan, D.L. Muscle damage from eccentric exercise: mechanism, mechanical signs, adaptation and clinical applications. The Journal of physiology. Vol. 537. Num. (Pt 2). 2001. p. 333-345.

-Rachdaoui, N.: Sarkar, D.K. Effects of alcohol on the endocrine system. Endocrinology and metabolism clinics of North America. Vol. 42. Num. 3. 2013. p. 593-615.

Shirreffs, S.M.; Maughan, R.J. The effect of alcohol on athletic performance. Current sports medicine reports. Vol. 5. Num. 4. 2006. p. 192-196.

-Shiwa, S.R.; Costa, L.O.; Costa, L.C.; Moseley, A.; Hespanhol Junior, L.C.; Venâncio, R.; Ruggero, C.; Sato, T.O.; Lopes, A.D. Reproducibility of the Portuguese version of the PEDro Scale. Cadernos de saude publica. Vol. 27. Num. 10. 2011. p. 2063-2068.

-Singh, R.; Cuervo, A.M. Autophagy in the cellular energetic balance. Cell metabolism. Vol. 13. Num. 5. 2011. p. 495-504.

-Smiles, W.J.; Parr, E.B.; Coffey, V.G.; Lacham-Kaplan, O.; Hawley, J.A.; Camera, D.M. Protein coingestion with alcohol following strenuous exercise attenuates alcohol-induced intramyocellular apoptosis and inhibition of autophagy. American journal of physiology. Endocrinology and metabolism. Vol. 311. Num. 5. 2016. p. E836-E849.

-Steiner, J.L.; Lang, C.H. Ethanol acutely antagonizes the refeeding-induced increase in mTOR-dependent protein synthesis and decrease in autophagy in skeletal muscle. Molecular and cellular biochemistry. Vol. 456. Num. 1-2. 2019. p. 41-51.

-Suter, P.M.; Schutz, Y. The effect of exercise, alcohol or both combined on health and physical performance. International journal of obesity. Vol. 32. Num. Suppl 6. 2008. p. S48-S52.

-Vella, L.D.; Cameron-Smith, D. Alcohol, athletic performance and recovery. Nutrients. Vol. 2. Num. 8. 2010. p. 781-789.

-Viloria, M.A.D.; Li, Q.; Lu, W.; Nhu, N.T.; Liu, Y.; Cui, Z.Y.; Cheng, Y.J.; Lee, S.D. Effect of exercise training on cardiac mitochondrial respiration, biogenesis, dynamics, and mitophagy in ischemic heart disease. Frontiers in cardiovascular medicine. Num. 9. 2022. p. 949744.

-Wang, P.; Long, M.; Zhang, S.; Cheng, Z.; Zhao, X.; He, F.; Liu, H.; Ming, L. Hypoxia inducible factor-1α regulates autophagy via the p27-E2F1 signaling pathway. Molecular medicine reports. Vol. 16. Num. 2. 2018. p. 2107-2112.

-WHO. World Health Organization. Global status report on alcohol and health. Geneva: World Health Organization. 2018.

Publicado
2024-07-11
Cómo citar
Sartori, H. S., Costodio, A. R., & Margutti, K. M. de M. (2024). El impacto del consumo de alcohol en la recuperación muscular en hombres después del ejercicio físico: una revisión sistemática de ensayos controlados aleatorios. RBNE - Revista Brasileña De Nutrición Deportiva, 18(110), 253-264. Recuperado a partir de https://www.rbne.com.br/index.php/rbne/article/view/2295
Sección
Artículos Científicos - Original