Influencia de la dosis y distribución de la ingesta proteica, asociada o no al entrenamiento de fuerza, sobre la tasa de síntesis proteica muscular

  • Victoria Larrain Hevia Universidade de São Paulo/Escola de Educação Fí­sica e Esporte
  • Vitor de Salles Painelli Universidade de São Paulo/Escola de Educação Fí­sica e Esporte
Palabras clave: Dosis, Distribución de proteinas, Sintesis de proteínas, Hipertrofia, Ejercicio físico

Resumen

Se sabe que los principales estímulos anabólicos para la ganancia de masa muscular son el ejercicio físico y la ingesta de proteínas y, desde hace décadas, los investigadores en el campo de la nutrición deportiva estudian cómo potenciar el efecto de estos dos estímulos para maximizar la ganancia de masa muscular. . Hoy en día, ya existen varios estudios que demuestran cómo algunos factores alimentarios pueden influir en la respuesta de los procesos de síntesis (SPM) y degradación de proteínas musculares (DPM), en la ganancia de masa muscular. Algunos de ellos, aún controvertidos, son la dosis de proteínas y la distribución de proteínas a lo largo del día. Por lo tanto, el objetivo de esta revisión narrativa fue resumir los estudios que investigaron la influencia de la dosis y distribución de proteínas, asociadas o no con el entrenamiento de fuerza, en el síndrome premenstrual. Se realizó una búsqueda de artículos en la literatura científica en la base de datos PubMed. De un total de 16 artículos encontrados, se seleccionaron diez para su análisis. De estos, siete artículos originales fueron seleccionados para discutir la influencia de la dosis de proteína en el síndrome premenstrual y otros tres fueron analizados para discutir la influencia de la distribución de proteína a lo largo del día en la síntesis de proteína. A pesar de la existencia de interesantes estudios sobre el tema, aún es prematuro concluir que la manipulación de ambas estrategias, -dosis y distribución-, garantiza una ganancia de masa muscular superior en ausencia de ellas, a largo plazo. Sin embargo, parecería interesante que los jóvenes alcancen alrededor de 20 gramos de proteína durante las comidas principales y respetando un intervalo mínimo de 3 horas entre ellas.

Biografía del autor/a

Victoria Larrain Hevia, Universidade de São Paulo/Escola de Educação Fí­sica e Esporte

Departamento de Esporte

Área de Concentração: Estudos Biodinâmicos da Educação Fí­sica e Esporte

Applied Physiology & Nutrition Research Group

 
Vitor de Salles Painelli, Universidade de São Paulo/Escola de Educação Fí­sica e Esporte

Departamento de Biodinâmica do Movimento do Corpo Humano

Área de Concentração: Estudos Biodinâmicos da Educação Fí­sica e Esporte

Applied Physiology & Nutrition Research Group

Citas

-Areta, J. L.; Burke, L. M.; Ross, M. L.; Camera, D. M.; West, D. W. D.; Broad, E. M.; Jeacocke, N. A; Moore, D. R.; Stellingwerff, T.; Phillips, S. M.; Hawley, J. A; Coffey, V. G. Timing and distribution of protein ingestion during prolonged recovery from resistance exercise alters myofibrillar protein synthesis. The Journal of physiology. Vol. 591. Num. 9.p. 2319-2131. 2013.

-Atherton, P. J.; Etheridge, T.; Watt, P. W.; Wilkinson, D.; Selby, A.; Rankin, D.; Smith, K.; Rennie, M. J. Muscle full effect after oral protein: Time-dependent concordance and discordance between human muscle protein synthesis and mTORC1 signaling. American Journal of Clinical Nutrition. Vol. 92. Num. 5. p. 1080-1088. 2010.

-Biolo, G.; Maggi, S. P.; Williams, B. D.; Tipton, K. D.; Wolfe, R. R. Increased rates of muscle protein turnover and amino acid transport after resistance exercise in humans. The American journal of physiology. Vol. 268. Num. 3. p. e514-E520. 1995.

-Biolo, G.; Tipton, K. D.; Klein, S.; Wolfe, R. R. An abundant supply of amino acids enhances the metabolic effect of exercise on muscle protein. The American journal of physiology. Vol. 273. Num. 1. p. e122-eE129. 1997.

-Bohé, J.; Low, J. F. A.; Wolfe, R. R.; Rennie, M. J. Latency and duration of stimulation of human muscle protein synthesis during continuous infusion of amino acids. The Journal of Physiology. Vol. 532. Num. 2. p. 575-579. 2001.

-Børsheim, E.; Tipton, K. D.; Wolf, S. E.; Wolfe, R. R. Essential amino acids and muscle protein recovery from resistance exercise. American journal of physiology. Endocrinology and metabolism. Vol. 283. Num. 4. p. e648-e657. 2002.

-Burd, N. A.; Tang, J. E.; Moore, D. R.; Phillips, S. M. Exercise training and protein metabolism: influences of contraction, protein intake, and sex-based differences. Journal of applied physiology (Bethesda, Md.: 1985). Vol. 106. Num. 5. p. 1692-1701. 2009.

-Cermak, N. M.; Res, P. T.; Groot, L. C. De; Saris, W. H. M.; Loon, L. J. C. Van. Protein supplementation augments the adaptive response of skeletal muscle to resistance type exercise training a meta analysis.pdf. American Journal of Clinical Nutrition. Vol. 96. p.1454-1464. 2012.

-Chesley, A.; Macdougall, J. D.; Tarnopolsky, M. A.; Atkinson, S. A.; Smith, K. Changes in human muscle protein synthesis after resistance exercise. Journal of applied physiology. Vol. 73. Num. 4. p. 1383-1388. 1992.

-Churchward-Venne, T. A.; Breen, L.; Di Donato, D. M.; Hector, A. J.; Mitchell, C. J.; Moore, D. R.; Stellingwerff, T.; Breuille, D.; Offord, E. A.; Baker, S. K.; Phillips, S. M. Leucine supplementation of a low-protein mixed macronutrient beverage enhances myofibrillar protein synthesis in young men: A double-blind, randomized trial1-3. American Journal of Clinical Nutrition. Vol. 99. Num. 2. p. 276-286. 2014.

-Churchward-Venne, T. A; Burd, N. A; Mitchell, C. J.; West, D. W. D.; Philp, A.; Marcotte, G. R.; Baker, S. K.; Baar, K.; Phillips, S. M. Supplementation of a suboptimal protein dose with leucine or essential amino acids: effects on myofibrillar protein synthesis at rest and following resistance exercise in men. The Journal of physiology. Vol. 590. Num. 11. p. 2751-2765. 2012.

-Cuthbertson, D.; Smith, K.; Babraj, J.; Leese, G.; Waddell, T.; Atherton, P.; Wackerhage, H.; Taylor, P. M.; Rennie, M. J. Anabolic signaling deficits underlie amino acid resistance of wasting, aging muscle. The FASEBjournal: official publication of the Federation of American Societies for Experimental Biology. Vol. 19. Num. 3. p. 422-424. 2005.

-Kim, I.-Y.; Schutzler, S.; Schrader, A.; Spencer, H. J.; Azhar, G.; Ferrando, A. A.; Wolfe, R. R. The anabolic response to a meal containing different amounts of protein is not limited by the maximal stimulation of protein synthesis in healthy young adults. American journal of physiology. Endocrinology and metabolism. Vol. 310. Num. 1. p. e73-80. 2016.

-Kumar, V.; Atherton, P.; Smith, K.; Rennie, M. J. Human muscle protein synthesis and breakdown during and after exercise. Journal of Applied Physiology. Vol. 106. Num. 6. p. 2026-2039. 2009.

-Mackenzie-Shalders, K. L.; King, N. A.; Byrne, N. M.; Slater, G. J. Increasing Protein Distribution Has No Effect on Changes in Lean Mass During a Rugby Preseason. International journal of sport nutrition and exercise metabolism. Vol. 26. Num. 1. p. 1-7. 2016.

-Mackenzie, K.; Slater, G.; King, N.; Byrne, N. The measurement and interpretation of dietary protein distribution during a rugby preseason. International Journal of Sport Nutrition and Exercise Metabolism. Vol. 25. Num. 4.p. 353-358. 2015.

-Macnaughton, L. S.; Wardle, S. L.; Witard, O. C.; Mcglory, C.; Hamilton, D. L.; Jeromson, S.; Lawrence, C. E.; Wallis, G. A.; Tipton, K. D. The response of muscle protein synthesis following whole‐body resistance exercise is greater following 40 g than 20 g of ingested whey protein. Physiological Reports. Vol. 4. Num. 15. p. e12893. 2016.

-Mamerow, M. M.; Mettler, J. A; English, K. L.; Casperson, S. L.; Arentson-Lantz, E.; Sheffield-Moore, M.; Layman, D. K.; Paddon-Jones, D. Dietary Protein Distribution Positively Influences 24-h Muscle Protein Synthesis in Healthy Adults 1-3. The Journal of Nutrition, p. 876-880. 2014.

-Matthews, D. E. 4th Amino Acid Assessment Workshop Observations of Branched-Chain Amino Acid Administration in Humans 1,2. Vol. 1989. Num. 9. p. 1580-1584. 2005.

-Mitchell, C. J.; Churchward-Venne, T. A.; Parise, G.; Bellamy, L.; Baker, S. K.; Smith, K.; Atherton, P. J.; Phillips, S. M. Acute post-exercise myofibrillar protein synthesis is not correlated with resistance training-induced muscle hypertrophy in young men. PLoS ONE. Vol. 9. Num. 2. p. 1-7. 2014.

-Moore, D. R.; Areta, J.; Coffey, V. G.; Stellingwerff, T.; Phillips, S. M.; Burke, L. M.; Cléroux, M.; Godin, J.-P.; Hawley, J. A. Daytime pattern of post-exercise protein intake affects whole-body protein turnover in resistance-trained males. Nutrition & Metabolism. Vol. 9. Num. 1. p. 91. 2012.

-Moore, D. R.; Robinson, M. J.; Fry, J. L.; Tang, J. E.; Glover, E. I.; Wilkinson, S. B.; Prior, T.; Tarnopolsky, M. A.; Phillips, S. M. Ingested protein dose response of muscle and albumin protein synthesis after resistance exercise in young men. American Journal of Clinical Nutrition. Vol. 89. Num. 1. p. 161-168. 2009.

-Morton, R. W.; Mcglory, C.; Phillips, S. M. Nutritional interventions to augment resistance training-induced skeletal muscle hypertrophy. Frontiers in Physiology. Vol. 6. p. 1-9. 2015.

-Phillips, S. M.; Moore, D. R.; Tang, J. E. A critical examination of dietary protein requirements, benefits, and excesses in athletes. International journal of sport nutrition and exercise metabolism. Vol. 17. Suppl. p. S58-76. 2007.

-Phillips, S. M.; Tipton, K. D.; Aarsland, A.; Wolf, S. E.; Wolfe, R. R. Mixed muscle protein synthesis and breakdown after resistance exercise in humans. Am J Physiol Endocrinol Metab. Vol. 273. Num. 1. p. e99-107. 1997.

-Phillips, S. M.; Tipton, K. D.; Ferrando, A. A.; Wolfe, R. R. Resistance training reduces the acute exercise-induced increase in muscle protein turnover. The American journal of physiology. Vol. 276. Num. 1. p. e118-e124. 1999.

-Rennie Mj, BohéJ, Smith K, Wackerhage H, G. P. Branched-Chain Amino Acids as Fuels and Anabolic Signals in Human Muscle. The Journal of Nutrition. Vol. 136. p. 274-276. 2006.

-Symons, T. B.; Sheffield-Moore, M.; Wolfe, R. R.; Paddon-Jones, D. A Moderate Serving ofHigh-Quality Protein Maximally Stimulates Skeletal Muscle Protein Synthesis in Young and Elderly Subjects. Journal of the American Dietetic Association. Vol. 109. Num. 9. p. 1582-1586. 2009.

-Tipton, K. D.; Witard, O. C. Protein requirements and recommendations for athletes: relevance of ivory tower arguments for practical recommendations. Clinics in sports medicine. Vol. 26. Num. 1. p. 17-36. 2007.

-Witard, O. C.; Jackman, S. R.; Breen, L.; Smith, K.; Selby, A.; Tipton, K. D. Myofibrillar muscle protein synthesis rates subsequent to a meal in response to increasing doses of whey protein at rest and after resistance exercise. American Journal of Clinical Nutrition. Vol. 99. Num. 1. p. 86-95. 2014.

-Yarasheski, K. E.; Zachwieja, J. J.; Bier, D. M. Acute effects of resistance exercise on muscle protein synthesis rate in young and elderly men and women. The American journal of physiology. Vol. 265. Num. 2. p. e210-E214.1993.

Publicado
2018-02-06
Cómo citar
Larrain Hevia, V., & de Salles Painelli, V. (2018). Influencia de la dosis y distribución de la ingesta proteica, asociada o no al entrenamiento de fuerza, sobre la tasa de síntesis proteica muscular. RBNE - Revista Brasileña De Nutrición Deportiva, 11(68), 963-973. Recuperado a partir de https://www.rbne.com.br/index.php/rbne/article/view/939
Sección
Artículos Científicos - Original