Integrazione di ß-alanina nel crosstraining

  • Felipe de Almeida Lernic Especialista em Nutrição, Metabolismo e Fisiologia do Exercício Físico pela Faculdade de Medicina de Ribeirão Preto-USP, Ribeirão Preto, São Paulo, Brasil.
  • Guilherme Giannini Artioli Doutor em Educação Física pela Escola de Educação Física e Esporte-USP, São Paulo, São Paulo, Brasil.
Parole chiave: β-alanina, Beta-alanina, Intergrazione, Esercizio, Addestramento, Atleta, Prestazione, Carnosina

Abstract

L'obiettivo del presente studio era di valutare il potenziale ergogenico, oltre a comprendere il processo mediante il quale l'integrazione di beta-alanina potrebbe influenzare le prestazioni nell'ambito del cross training. Pertanto, questo studio presenta una sintesi critica della letteratura, spiegando le esigenze fisiologiche e metaboliche di questo tipo di allenamento, analizzando la plausibilità biologica e il grado di evidenza scientifica che giustificherebbe (o meno) il consumo da parte di atleti o praticanti della modalità. Per la presente analisi sono stati utilizzati approcci qualitativi e tecniche di snowballing, basati su libri, periodici e articoli scientifici, tesi di dottorato e magistrali indicizzati nei database di Google Academic, Scielo, Pubmed. Negli studi valutati, dosi di ß-alanina comprese tra 3,2 e 6,4 g/die erano efficaci negli esercizi di breve durata e ad alta intensità (oltre il 60% del VO2 max). Inoltre, gli studi mostrano il potenziale ergogenico per diminuire il tempo in protocolli specifici, aumentare la potenza media, la potenza di picco e aumentare il volume di allenamento in modalità come ciclismo, forza, canottaggio, corsa (da 400 a 1500 m) e nuoto, che sono modalità presenti nel cross training protocolli. Il principale effetto collaterale della beta-alanina è stata la parestesia, che è stata ridotta al minimo negli studi in cui si è verificata una riduzione della dose totale a dosi equivalenti di 10 mg/kg, a intervalli di 3 ore. Studi successivi dovrebbero testare l'integrazione di ß-alanina in protocolli specifici, con l'obiettivo di confermare queste ipotesi, oltre a mostrare l'entità dell'effetto dell'integrazione.

Riferimenti bibliografici

-Artioli, G. G.; Painelli, V. D. S.; Gualano, B. Suplementação de B-alanina: fundamentos fisiológicos e aplicações para o exercício, esporte e saúde. Clanad. 2019. p. 69-99.

-Baguet, A.; Bourgois, J.; Vanhee, L.; Achten, E.; Derave, W. Important role of muscle carnosine in rowing performance. J Appl Physiol. Vol. 109. Núm 4. 2010. p. 1096-1101. 2010. https://pubmed.ncbi.nlm.nih.gov/20671038

-Bellinger, P. M.; Howe, S. T.; Shing, C. M.; Fell, J. W. Effect of combined ß-alanine and sodium bicarbonate supplementation on cycling performance. Medicine & Science in Sports & Exercise. Vol. 44. Núm. 8. 2012. p. 1545-1551. https://pubmed.ncbi.nlm.nih.gov/22330016

-Broch-Lips, M.; Overgaard, K.; Praetorius, H. A.; Nielsen, O. B. Effects of extracellular hco3- on fatigue, ph i, and k+ efflux in rat skeletal muscles. Journal of Applied Physiology. Vol. 103. Núm. 2. p. 494-503. 2007. https://pubmed.ncbi.nlm.nih.gov/17446415

-Chung, W.; Shaw, G.; Anderson, M. E.; Pyne, D. B.; Saunders, P. U.; Bishop, D. J.; Burke, L. M. Effect of 10-week beta-alanine supplementation on competition and training performance in elite swimmers. Nutrients. Vol. 4. Núm. 10. p. 1441-1453. 2012. https://pubmed.ncbi.nlm.nih.gov/23201763

-Chung, W.; Baguet, A.; Bex, T.; Bishop, D. J.; Derave, W. Doubling of muscle carnosine concentration does not improve laboratory 1-hr cycling time-trial performance. Int J Sport Nutr Exerc Metab. Vol. 24. Num. 3. p. 315-324. 2014. https://pubmed.ncbi.nlm.nih.gov/24457999

-Crossfit. 2007 Reload. De 22 de outubro de 2020. California do Norte. 2020. https://Games.Crossfit.Com/Workouts/Games/2020#Events-Details

-Danaher, J.; Gerber, T.; Wellard, R. M.; Stathis, C. G. The effect of β-alanine and NaHCO3 co-ingestion on buffering capacity and exercise performance with high-intensity exercise in healthy males. Eur J Appl Physiol. Vol. 114. Núm. 8. p. 1715-1724. 2014. https://pubmed.ncbi.nlm.nih.gov/24832191/

-Derave, W.; Ozdemir, M.S.; Harris, R.C.; Pottier, A.; Reyngoudt, H.; Koppo, K.; Wise, J.A.; Achten, E. Beta-Alanine supplementation augments muscle carnosine content and attenuates fatigue during repeated isokinetic contraction bouts in trained sprinters. J Appl Physiol. Vol. 103. Núm. 5. p. 1736-1743. 2007. https://pubmed.ncbi.nlm.nih.gov/17690198

-Ducker, K. J.; Dawson, B.; Wallman, K. E. Effect of Beta-Alanine Supplementation on 2000-M Rowing-Ergometer Performance. Int J Sport Nutr Exerc Metab. Vol. 23. Núm. 4. p. 336-343. 2013. https://pubmed.ncbi.nlm.nih.gov/23239676

-Ducker, K. J.; Dawson, B.; Wallman, K. E. Effect of Beta-Alanine Supplementation on 800-M Running Performance. Int J Sport Nutr Exerc Metab. Vol. 23. Núm. 6. p. 554-561. 2013. https://pubmed.ncbi.nlm.nih.gov/23630039

-Eather, N.; Morgan, P. J.; Lubans, D. R. Effects of Exercise on Mental Health Outcomes In Adolescents Dofindings From The Crossfit Tm Teens Randomized Controlled Trial. Psychology of Sport & Exercise. Vol. 26. p. 14-23. 2016.

-Eather, N.; Morgan, P. J.; Lubans, D. R. Improving Health-Related Fitness In Adolescents Dothe Crossfit Teens Tm Randomised Controlled Trial. Journal of Sports Sciences. Vol. 34. Núm. 3. p. 209-223. 2016. https://pubmed.ncbi.nlm.nih.gov/25972203/

-Eijsvogels, T. M. H.; Fernandez, A. B.; Thompson, P. D. Are there deleterious cardiac effects of acute and chronic endurance exercise? Physiological Reviews. Vol. 96. Núm. 1. p. 99-125. 2016. https://pubmed.ncbi.nlm.nih.gov/26607287/

-Everaert, I.; Mooyaart, A.; Baguet, A.; Zutinic, A.; Baelde, H.; Achten, E.; Taes, Y.; De Heer, E.; Derave, W. Vegetarianism, Female Gender and Increasing Age, But Not Cndp1 Genotype Are Associated With Reduced Muscle Carnosine Levels In Humans. Amino Acids. Vol. 40. Núm. 4. p. 1221-1229. 2011. https://pubmed.ncbi.nlm.nih.gov/20865290/

-Fisker, F. Y.; Kildegaard, S.; Thygesen, M.; Grosen, K. Acute Tendon Changes In Intense Crossfit Workout Oran Observational Cohort Study. Scand J Med Sci Sports. Vol. 27. Núm. 11. p. 1-5. 2016. https://pubmed.ncbi.nlm.nih.gov/27714843

-Fitts, R. H. The Cross-Bridge Cycle and Skeletal Muscle Fatigue. Journal of Applied Physiology. Vol. 104. Núm. 2. p. 551-558. 2008.

-Fitts, R. H. The role of acidosis in fatigue: pro perspective. Medicine and Science In Sports and Exercise. Vol. 48. Núm. 11. p. 2335-2338. 2016. https://pubmed.ncbi.nlm.nih.gov/27755382

-Gastin, P. Energy System Interaction and Relative Contribution During Maximal Exercise. Sports Medicine. Vol. 31. Núm. 10. p. 725-741. 2001. https://pubmed.ncbi.nlm.nih.gov/11547894

-Geers, C.; Gross, G. Carbon dioxide transport and carbonic anhydrase in blood and muscle. Physiological Reviews. Vol. 80. Núm. 2. p. 681-715. 2000. https://pubmed.ncbi.nlm.nih.gov/10747205

-Grier, T.; Canham-Chervak, M.; McNulty, V.; Jones, B. H. Extreme conditioning programs and injury risk in a US Army Brigade Combat Team. U.S. Army Medical Department journal. p. 36-47. 2013. https://pubmed.ncbi.nlm.nih.gov/24146241

-Harris, R. C.; Tallon, M. J.; Dunnett, M.; Boobis, L.; Coakley, J.; Kim, H. J. The Absorption of Orally Supplied B -Alanine and Its Effect on Muscle Carnosine Synthesis In Human Vastus Lateralis. Amino Acids. Vol. 30. Núm. 3. p. 279-289. 2006.

-Heinrich, K. M.; Becker, C.; Carlisle, T.; Gilmore, K.; Hauser, J.; Frye, J.; Euro-, Harms C. A. High-intensity functional training improves functional movement and body composition among cancer survivors: a pilot study. European journal of cancer care. Vol. 24. Núm. 6. p. 812-817. 2015. https://pubmed.ncbi.nlm.nih.gov/26094701

-Heinrich, K. M.; Patel, P. M.; Neal, J. L. O.; Heinrich, B. S. High-intensity compared to moderate-intensity training for exercise initiation, enjoyment, adherence, and intentions: an intervention study. BMC Public Health. Vol. 14. Núm. 789. p. 1-6. 2014. https://bmcpublichealth.biomedcentral.com/articles/10.1186/1471-2458-14-789

-Hill, C. A.; Harris, R. C.; Kim, H. J.; Harris, B. D.; Sale, C.; Boobis, L. H.; Kim, C. K.; Wise, J. A. Influence of Β-Alanine Supplementation on Skeletal Muscle Carnosine Concentrations and High Intensity Cycling Capacity. Amino Acids. Vol. 32. Núm. 2. p. 225-233. 2007. https://pubmed.ncbi.nlm.nih.gov/16868650

-Hirakoba, K. Buffering Capacity In Human Skeletal Muscle: A Brief Review. Dissertação. Departamento de Ciências Humanas da Faculdade de Ciência da Computação e Engenharia de Sistemas. Instituto de Tecnologia de Kyushu. Kawazu. 1999. https://core.ac.uk/download/pdf/147422562.pdf

-Hobson, R. M.; Saunders, B.; Ball, G.; Harris, R. C.; Sale, C. Effects of Β-Alanine Supplementation on Exercise Performance: A Meta-Analysis. Amino Acids. Vol. 43. Núm. 1. p. 25-37. 2012. https://pubmed.ncbi.nlm.nih.gov/22270875

-Hobson, R. M.; Harris, R. C.; Martin, D.; Smith, P.; Macklin, B.; Gualano, B.; Sale, C. Effect of Beta-Alanine With and Without Sodium Bicarbonate on 2000-M Rowing Performance. International journal of sport nutrition and exercise metabolism. Vol. 23. Núm. 5. p. 480-487, 2013. https://pubmed.ncbi.nlm.nih.gov/23535873

-Hoffman, J.; Ratamess, N. A.; Ross, R.; Kang, J.; Magrelli, J.; Neese, K.; Faigenbaum, A. D.; Wise, J. A. Beta-alanine and the hormonal response to exercise. International journal of sports medicine. Vol. 29. Núm. 12. p. 952-958. 2008. https://pubmed.ncbi.nlm.nih.gov/18548362

-Howe, S. T.; Bellinger, P. M.; Driller, M. W.; Shing, C. M.; Fell, J. W. The Effect of Beta-Alanine Supplementation on Isokinetic Force and Cycling Performance In Highly Trained Cyclists. International journal of sport nutrition and exercise metabolism. Vol. 26. Núm. 3. p. 562–570. 2013. https://pubmed.ncbi.nlm.nih.gov/23630052

-Jagim, A. R.; Wright, G. A.; Brice, A. G. Effects of Beta-Alanine Supplementation on Sprint Endurance. Journal of Strength and Conditioning Research. Vol. 27. Núm. 2. p. 526-532. 2013. https://pubmed.ncbi.nlm.nih.gov/22476168

-James, R. M.; Cooper, S. B.; Martin, D.; Harris, R. C.; Sale, C. Effect of Β -Alanine Supplementation on 20 Km Cycling Time Trial Performance. Vol. 28. Núm. 3. p. 395-403. 2014.

-Juel, C. Regulation of Ph In Human Skeletal Muscle: Adaptations To Physical Activity. Acta Physiol (Oxf). Vol. 193. Núm. 1. p. 17-24. 2008. https://pubmed.ncbi.nlm.nih.gov/18267000

-Kliszczewicz, B.; John, C.; Daniel, L.; Gretchen, D.; Michael, R.; Kyle, J. Acute Exercise and Oxidative Stress: CrossFit(™) vs. Treadmill Bout. Journal of human kinetics. Vol. 47. p. 81-90. 2015. https://pubmed.ncbi.nlm.nih.gov/26557192

-Kliszczewicz, B.; Williamson, C.; Bechke, E.; Mckenzie, M. Autonomic response to a short and long bout of high-intensity functional training. Journal of Sports Sciences, Vol. 36. Núm. 16. p. 1-8. 2018. https://pubmed.ncbi.nlm.nih.gov/29308709

-Heavens, K. R.; Szivak, T. K.; Hooper, D. R.; Dunn-Lewis, C.; Comstock, B. A.; Flanagan, S. D.; Looney, D. P.; Kupchak, B. R.; Maresh, C. M.; Volek, J. S.; Kraemer, W. J. The Effects of High Intensity Short Rest Resistance Exercise on Muscle Damage Markers In Men and Women. Journal of strength and conditioning research. Vol. 28. Núm. 4. p. 1041-1049. 2014. https://pubmed.ncbi.nlm.nih.gov/24662155

-Lancha Junior, A. H.; Painelli, V.; Saunders, B.; Artioli, G. G. Nutritional Strategies to Modulate Intracellular and Extracellular Buffering Capacity During High-Intensity Exercise. Sports medicine. Vol. 45. Núm. 1. p. 71-81. 2015. https://pubmed.ncbi.nlm.nih.gov/26553493

-Liu, Q.; Sikand, P.; Ma, C.; Tang, Z.; Han, L.; Li, Z.; Sun, S.; LaMotte, R. H.; Dong, X. Mechanisms of itch evoked by β-alanine. The Journal of neuroscience: the official journal of the Society for Neuroscience. Vol. 32. Núm. 42. p. 14532-14537. 2012. https://pubmed.ncbi.nlm.nih.gov/23077038/

-Martínez, B. J.; Gómez-Mármol, A. Percepción de esfuerzo, diversión y aprendizaje en alumnos de educación secundaria en las clases de Educación Física durante una Unidad Didáctica de CrossFit. SPORT TK-Revista EuroAmericana de Ciencias del Deporte. Vol. 4. Núm. 1. p. 63-67. 2015.

-Maté-Muñoz, J. L.; Lougedo, J. H.; Barba, M.; García-Fernández, P.; Garnacho-Castaño, M. V.; Domínguez, R. Muscular fatigue in response to different modalities of CrossFit sessions. PloSone. p. 1-17. 2017. https://pubmed.ncbi.nlm.nih.gov/28753624

-Mero, A. A.; Hirvonen, P.; Saarela, J.; Hulmi, J. J.; Hoffman, J. R.; Stout, J. R. Effect of Sodium Bicarbonate and Beta-Alanine Supplementation on Maximal Sprint Swimming. Journal of the International Society of Sports Nutrition. Vol. 10. Núm. 1. p. 1-9. 2013. https://pubmed.ncbi.nlm.nih.gov/24215679

-Nieuwoudt, S.; Fealy, C. E.; Foucher, J. A.; Scelsi, A. R.; Malin, S. K.; Pagadala, M.; Rocco, M.; Burguera, B.; Kirwan, J. P. Functional high-intensity training improves pancreatic β-cell function in adults with type 2 diabetes. American journal of physiology. Endocrinology and metabolism. Vol. 313. Núm. 3. 2017. https://pubmed.ncbi.nlm.nih.gov/28512155

-Powers, S. K.; Howley, T. E. Fisiologia do exercício: teoria e aplicação ao condicionamento e ao desempenho. 9ª edição. Barueri. 2017.

-Sale, C.; Saunders, B.; Hudson, S.; Wise, J. A.; Harris, R. C.; Sunderland, C. D. Effect of Β-Alanine Plus Sodium Bicarbonate on High-Intensity Cycling Capacity. Medicine and Science In Sports and Exercise. Vol. 43. Núm. 10. p. 1972-1978. 2011. https://pubmed.ncbi.nlm.nih.gov/21407127

-Saunders, B.; Elliott-Sale, K.; Artioli, G.G.; Swinton, P.; Dolan, E.; Roschel, H.; Sale, C.; Gualano, B. β-alanine supplementation to improve exercise capacity and performance: A systematic review and meta-analysis. British Journal of Sports Medicine. Vol. 51. Núm. 8. p. 658-669. 2017.

-Saunders, B.; Franchi, M.; Oliveira, L. F.; da Eira Silva, V.; da Silva, R. P.; de Salles Painelli, V.; Costa, L.; Sale, C.; Harris, R. C.; Roschel, H.; Artioli, G. G.; Gualano, B. 24-Week β-alanine ingestion does not affect muscle taurine or clinical blood parameters in healthy males. European journal of nutrition. Vol. 59. Núm. 1. 2020. https://pubmed.ncbi.nlm.nih.gov/30552505

-Saunders, B.; Sale, C.; Harris, R. C.; Morris, J. G.; Sunderland, C. Reliability of a high-intensity cycling capacity test. Journal of science and medicine in sport. Vol. 16. Núm. 3. p. 286–289. 2013. https://pubmed.ncbi.nlm.nih.gov/22884738

-Saunders, B.; Sale, C.; Harris, R. C.; Sunderland, C. Sodium Bicarbonate and High-Intensity-Cycling Capacity: Variability In Responses. International Journal of Sports Physiology and Performance. Vol. 9. Núm. 4. p. 627-632. 2014. https://pubmed.ncbi.nlm.nih.gov/24155093

-Silva, C. R. Q. Critérios para priorização de estudos primários identificados por snowballing com conjunto inicial gerado por string de busca. Dissertação de Mestrado. Universidade Federal de São Carlos. São Carlos. 2020.

-Stout, Jeffrey R.; Cramer, Joel T.; Mielke, Michelle; O’Kroy, Joseph; Torok, Don J.; Zoeller, Robert F. Effects of Twenty-Eight Days of Beta-Alanine and Creatine Monohydrate Supplementation on The Physical Working Capacity at Neuromuscular Fatigue Threshold. Journal of Strength and Conditioning Research. Vol. 20. Núm. 4. p. 928-931. 2006. https://pubmed.ncbi.nlm.nih.gov/17194255

-Sprey, J. W.; Ferreira, T.; Lima, M. V.; Duarte, A.; Jr, Jorge, P. B.; Santili, C. An Epidemiological Profile of Crossfit Athletes In Brazil. Orthopaedic journal of sports medicine. Vol. 4. Núm. 8. p. 1-8. 2015. https://pubmed.ncbi.nlm.nih.gov/27631016

-Stellingwerff, T.; Anwander, H.; Egger, A.; Buehler, T.; Kreis, R.; Decombaz, J.; Boesch, C. Effect of Two Β-Alanine Dosing Protocols on Muscle Carnosine Synthesis and Washout. Amino Acids. Vol. 42. Núm. 6. p. 2461-2472. 2012. https://pubmed.ncbi.nlm.nih.gov/21847611

-Tanaka, H. Effects of cross-training. Transfer of training effects on VO2max between cycling, running and swimming. Sports medicine. Vol. 18. Núm. 5. p. 330-339. 1994. https://pubmed.ncbi.nlm.nih.gov/7871294

-Tibana, R. A.; Almeida, L. M.; Frade de Sousa, N. M.; Nascimento, D.; Neto, I. V.; Almeida, J. A.; Souza, V. C.; Lopes, M.; Nobrega, O.; Vieira, D. C.; Navalta, J. W.; Prestes, J. Two Consecutive Days of Extreme Conditioning Program Training Affects Pro and Anti-Inflammatory Cytokines and Osteoprotegerin Without Impairments In Muscle. Vol. 7. p. 260. 2016. https://pubmed.ncbi.nlm.nih.gov/27445850

-Tibana, R. A.; Sousa, N. Are extreme conditioning programmes effective and safe? A narrative review of high-intensity functional training methods research paradigms and findings. BMJ open sport & exercise medicine. Vol. 4. Núm. 1. 2018. https://pubmed.ncbi.nlm.nih.gov/30498574

-Tobias, G.; Benatti, F. B.; Salles Painelli, V.; Roschel, H.; Gualano, B.; Sale, C.; Harris, R. C.; Lancha Junior, A. H.; Artioli, G. G. Additive effects of beta-alanine and sodium bicarbonate on upper-body intermittent performance. Amino acids. Vol. 45. Núm. 2. 2013. https://pubmed.ncbi.nlm.nih.gov/23595205

-Ward, J. K.; Hastie, P. A.; Wadsworth, D. D.; Foote, S.; Brock, S. J.; Hollett, N. A Sport Education Fitness Season’S Impact on Students’ Fitness Levels, Knowledge, and In-Class Physical Activity. Research Quarterly For Exercise and Sport. Vol. 88. Núm. 3. p. 1-6. 2017. https://pubmed.ncbi.nlm.nih.gov/28524725

-Van Thienen, R.; Van Proeyen, K.; Vanden Eynde, B.; Puype, J.; Lefere, T.; Hespel, P. Beta-alanine improves sprint performance in endurance cycling. Medicine and science in sports and exercise. Vol. 41. Núm. 4. p. 898-903. 2009. https://pubmed.ncbi.nlm.nih.gov/19276843

-Yamaguchi, G. C.; Nemezio, K.; Schulz, M. L.; Natali, J.; Cesar, J. E.; Riani, L. A.; Gonçalves, L. S.; Möller, G. B.; Sale, C.; DE Medeiros, M.; Gualano, B.; Artioli, G. G. Kinetics of Muscle Carnosine Decay after β-Alanine Supplementation: A 16-wk Washout Study. Medicine and science in sports and exercise. Vol. 53. Núm. 5. 2020. https://pubmed.ncbi.nlm.nih.gov/33148972

Pubblicato
2022-05-14
Come citare
Lernic, F. de A., & Artioli, G. G. (2022). Integrazione di ß-alanina nel crosstraining. RBNE - Giornale Brasiliano Di Nutrizione Sportiva, 16(98), 208-228. Recuperato da https://www.rbne.com.br/index.php/rbne/article/view/1992
Sezione
Articoli scientifici - Revisione

Puoi leggere altri articoli dello stesso autore/i