A ingestão de bebidas energéticas antes do exercício afeta a dinâmica não linear da recuperação da variabilidade da frequência cardíaca? Um ensaio randomizado, crossover, duplo-cego e controlado por placebo

  • Andrey Alves Porto Department of Movement Sciences, Faculty of Sciences and Technologies, UNESP, Presidente Prudente-SP, Brazil; Center for the Study of the Autonomic Nervous System Center, UNESP, Marilia-SP, Brazil.
  • Luana A. Gonzaga Department of Movement Sciences, Faculty of Sciences and Technologies, UNESP, Presidente Prudente-SP, Brazil; Center for the Study of the Autonomic Nervous System Center, UNESP, Marilia-SP, Brazil.
  • Cicero Jonas R. Benjamim Department of Internal Medicine, Ribeirao Preto Medical School, University of Sao Paulo (FMRP/USP), Ribeirao Preto-SP, Brazil; Center for the Study of the Autonomic Nervous System Center, UNESP, Marilia-SP, Brazil.
  • Vinicius Ferreira Cardoso Department of Movement Sciences, Faculty of Sciences and Technologies, UNESP, Presidente Prudente-SP, Brazil; Center for the Study of the Autonomic Nervous System Center, UNESP, Marilia-SP, Brazil.
  • David M. Garner Cardiorespiratory Research Group, Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Headington Campus, Oxford, OX3 0BP, United Kingdom.
  • Celso Ferreira Center for the Study of the Autonomic Nervous System Center, UNESP, Marilia-SP, Brazil; Department of Medicine, Federal University of São Paulo, UNIFESP-SP, Brazil.
  • Carlos Roberto Bueno Júnior Department of Internal Medicine, Ribeirao Preto Medical School, University of Sao Paulo (FMRP/USP), Ribeirao Preto-SP, Brazil; Center for the Study of the Autonomic Nervous System Center, UNESP, Marilia-SP, Brazil.
  • Vitor Engracia Valenti Center for the Study of the Autonomic Nervous System Center, UNESP, Marilia-SP, Brazil.
Palavras-chave: Bebida energética, Exercício, Variabilidade da frequência cardíaca, Dinâmica não linear

Resumo

Introdução e Objectivo: As bebidas energéticas (DE) são reconhecidas por influenciar o comportamento dos componentes simpáticos e parassimpáticos do sistema nervoso autónomo. Pretendemos estudar a influência da DE na variabilidade não linear da frequência cardíaca (VFC) após o exercício. Material e Métodos: Este ensaio clínico randomizado, cruzado, duplo-cego, controlado por placebo (número de protocolo NCT02917889) foi concluído numa amostra de 28 homens saudáveis ​​com 24,11 ± 3,05 anos de idade (mín-máx 18- 29). A primeira etapa envolveu a avaliação do consumo máximo de oxigénio (VO2 máx). No segundo protocolo, os sujeitos receberam placebo (250ml de água) ou ED (250ml de bebida energética) 15 minutos antes do exercício de 30 minutos em passadeira. No terceiro protocolo, os participantes receberam o protocolo alternativo à etapa anterior. A VFC não linear foi calculada em momentos diferentes durante os protocolos. Resultados: A análise fractal via Detrended Fluctuation Analysis (DFA) revelou que no protocolo placebo houve um aumento dos seus valores em relação à recuperação (Rec1) vs. Repouso (Cohen's d= 1,42) e continuou a aumentar nos últimos intervalos de registo: vs. Rec6 (d de Cohen = 0,70) e vs. Rec7 (d de Cohen = 0,85). No protocolo ED, o aumento do DFA só foi demonstrado quando se compara o Rec1 vs. Rest (Cohen’s d=1,78). Conclusão: A ingestão de DE antes do exercício aeróbico moderado desencadeou uma ligeira aceleração da recuperação.

Referências

-An, S.M.; Park, J.S.; Kim, S.H. Effect of energy drink dose on exercise capacity, heart rate recovery and heart rate variability after high-intensity exercise. Journal of Exercise Nutrition & Biochemistry. Vol. 18. Num. 1. 2014. p. 31-39. doi:10.5717/jenb.2014.18.1.31.

-Barroso, W.K.S.; Rodrigues, C.I.S.; Bortolotto, L.A.; Mota-Gomes, M.A.; Brandão, A.A.; Feitosa, A.D.M.; Machado, C.A.; Poli-de-Figueiredo, C.E.; Amodeo, C.; Mion Júnior, D.; Barbosa, E.C.D.; Nobre, F.; Guimarães, I.C.B.; Vilela-Martin, J.F.; Yugar-Toledo, J.C.; Magalhães, M.E.C.; Neves, M.F.T.; Jardim, P.C.B.V.; Miranda, R.D.; Póvoa, R.M.S.; Fuchs, S.C.; Alessi, A.; Lucena, A.J.G.; Avezum, A.; Sousa, A.L.L.; Pio-Abreu, A.; Sposito, A.C.; Pierin, A.M.G.; Paiva, A.M.G.; Spinelli, A.C.S.; Nogueira, A.R.; Dinamarco, N.; Eibel, B.; Forjaz, C.L.M.; Zanini, C.R.O.; Souza, C.B.; Souza, D.S.M.; Nilson, E.A.F.; Costa, E.F.A.; Freitas, E.V.; Duarte, E.R.; Muxfeldt, E.S.; Lima Júnior, E.; Campana, E.M.G.; Cesarino, E.J.; Marques, F.; Argenta, F.; Consolim-Colombo, F.M.; Baptista, F.S.; Almeida, F.A.; Borelli, F.A.O.; Fuchs, F.D.; Plavnik, F.L.; Salles, G.F.; Feitosa, G.S.; Silva, G.V.; Guerra, G.M.; Moreno Júnior, H.; Finimundi, H.C.; Back, I.C.; Oliveira Filho, J.B.; Gemelli, J.R.; Mill, J.G.; Ribeiro, J.M.; Lotaif, L.A.D.; Costa, L.S.; Magalhães, L.B.N.C.; Drager, L.F.; Martin, L.C.; Scala, L.C.N.; Almeida, M.Q.; Gowdak, M.M.G.; Klein, M.R.S.T.; Malachias, M.V.B.; Kuschnir, M.C.C.; Pinheiro, M.E.; Borba, M.H.E.; Moreira Filho, O.; Passarelli Júnior, O.; Coelho, O.R.; Vitorino, P.V.O.; Ribeiro Junior, R.M.; Esporcatte, R.; Franco, R.; Pedrosa, R.; Mulinari, R.A.; Paula, R.B.; Okawa, R.T.P.; Rosa, R.F.; Amaral, S.L.; Ferreira-Filho, S.R.; Kaiser, S.E.; Jardim, T.S.V.; Guimarães, V.; Koch, V.H.; Oigman, W.; Nadruz, W. Diretrizes Brasileiras de Hipertensão Arterial. 2020. Arquivos Brasileiros de Cardiologia. Vol. 116. Num. 3. 2021. p. 516-658.

-Benjamim, C.J.R.; Monteiro, L.R.L.; Pontes, Y.M.M.; Silva, A.A.M.D.; Souza, T.K.M.; Valenti, V.E.; Garner, D.M.; Cavalcante, T.C.F. Caffeine slows heart rate autonomic recovery following strength exercise in healthy subjects. Revista Portuguesa de Cardiologia (English Edition). Vol. 40. Num. 6. 2021a. p. 399-406. doi:10.1016/j.repce.2020.07.021.

-Benjamim, C.J.R.; S Júnior, F.W.; Figueirêdo, M.Í.L.S.; Cavalcante, T.C.F.; Silva, A.A.M.; Monteiro, L.R.L.; Santana, M.D.R.; Garner, D.M.; Valenti, V.E. Beetroot (Beta Vulgaris L.) Extract Acutely Improves Heart Rate Variability Recovery Following Strength Exercise: A Randomized, Double-Blind, Placebo-Controlled Crossover Trial-Pilot Study. Journal of the American College of Nutrition. Vol. 40. Num. 4. 2021b. p. 307-316. doi:10.1080/07315724.2020.1774441.

-Billat, V.L.; Morton, R.H.; Blondel, N.; Berthoin, S.; Bocquet, V.; Koralsztein, J.P.; Barstow, T.J. Oxygen kinetics and modelling of time to exhaustion whilst running at various velocities at maximal oxygen uptake. European Journal of Applied Physiology. Vol. 82. Num. 3. 2000. P. 178-87. doi:10.1007/s004210050670.

-Black, N.; D'Souza, A.; Wang, Y.; Piggins, H.; Dobrzynski, H.; Morris, G.; Boyett, M.R. Circadian rhythm of cardiac electrophysiology, arrhythmogenesis, and the underlying mechanisms. Heart Rhythm. Vol. 16. Num. 2. 2019. p. 298-307. doi:10.1016/j.hrthm.2018.08.026.

-Caliskan, S.G.; Bilgin, M.D. Non-linear analysis of heart rate variability for evaluating the acute effects of caffeinated beverages in young adults. Cardiology in the Young. Vol. 30. Num. 7. 2020. p. 1018-1023. doi:10.1017/S1047951120001481.

-Clark, N.W.; Herring, C.H.; Goldstein, E.R.; Stout, J.R.; Wells, A.J.; Fukuda, D.H. Heart Rate Variability Behavior during Exercise and Short-Term Recovery Following Energy Drink Consumption in Men and Women. Nutrients. Vol. 12. Num. 8. 2020. p. 2372. doi: 10.3390/nu12082372.

-Cole, C.R.; Blackstone, E.H.; Pashkow, F.J.; Snader, C.E.; Lauer, M.S. Heart-rate recovery immediately after exercise as a predictor of mortality. The New England Journal of Medicine. Vol. 341. Num. 18. 1999. p.1351-1357. doi:10.1056/NEJM199910283411804.

-Delliaux, S.; Delaforge, A.; Deharo, J.C.; Chaumet, G. Mental Workload Alters Heart Rate Variability, Lowering Non-linear Dynamics. Frontiers in Physiology. Vol. 10. 2019. p. 565. doi:10.3389/fphys.2019.00565.

-Godoy, M.F.; Takakura, I.T.; Correa, P.R. Relevância da análise do comportamento dinâmico não-linear (Teoria do Caos) como elemento prognóstico de morbidade e mortalidade em pacientes submetidos à cirurgia de revascularização miocárdica. Arquivos de Ciências da Saúde. Vol. 12. Num. 4. 2005. p. 167-171.

-Goldberger, A.L.; Amaral, L.A.; Glass, L.; Hausdorff, J.M.; Ivanov, P.C.; Mark, R.G.; Mietus, J.E.; Moody, G.B.; Peng, C.K.; Stanley, H.E. PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation. Vol. 101. Num. 23. 2000. p. e215-e220. doi:10.1161/01.cir.101.23.e215.

-Gutiérrez-Hellín, J.; Varillas-Delgado, D. Energy Drinks and Sports Performance, Cardiovascular Risk, and Genetic Associations; Future Prospects. Nutrients. Vol. 13. Num. 3. 2021. p. 715. doi:10.3390/nu13030715.

-Guyton, A.C.; Hall J.E. Tratado de Fisiologia Médica. 12ª edição. Elsevier Medicina. 2011.

-Jones, G. Caffeine and other sympathomimetic stimulants: modes of action and effects on sports performance. Essays in Biochemistry. Vol. 44. 2008. p. 109-123. doi:10.1042/BSE0440109.

-Kulthinee, S.; Wyss, J.M.; Roysommuti, S. Taurine Supplementation Inhibits Cardiac and Systemic Renin-Angiotensin System Overactivity After Cardiac Ischemia/Reperfusion in Adult Female Rats Perinatally Depleted of Taurine Followed by High Sugar Intake. Advances in Experimental Medicine and Biology. Vol. 1155. 2019. p. 101-112. doi:10.1007/978-981-13-8023-5_9.

-Laborde, S.; Mosley, E.; Thayer, J.F. Heart Rate Variability and Cardiac Vagal Tone in Psychophysiological Research - Recommendations for Experiment Planning, Data Analysis, and Data Reporting. Frontiers in Psychology. Vol. 8. 2017. p. 213. doi:10.3389/fpsyg.2017.00213.

-Lohman, T.G.; Roache, A.F.; Martorell, R. Anthropometric Standardization Reference Manual. Medicine & Science in Sports & Exercise. Vol. 24. Num. 8. 1992. p.952.

-Lovallo, W.R.; Pincomb, G.A.; Sung, B.H.; Passey, R.B.; Sausen, K.P.; Wilson, M.F. Caffeine may potentiate adrenocortical stress responses in hypertension-prone men. Hypertension. Vol. 14. Num. 2. 1989. p. 170-176. doi:10.1161/01.hyp.14.2.170.

-Makikallio, T.H.; Høiber, S.; Køber, L.; Torp-Pedersen, C.; Peng, C.K.; Goldberger, A.L.; Huikuri, H.V. Fractal analysis of heart rate dynamics as a predictor of mortality in patients with depressed left ventricular function after acute myocardial infarction. TRACE Investigators. TRAndolapril Cardiac Evaluation. The American Journal of Cardiology. Vol. 83. Num. 6. 1999. p. 836-839. doi:10.1016/s0002-9149(98)01076-5.

-Mal'chikova, L.S.; Elizarova, E.P. Taurin i soderzhanie TsAMF v serdtse [Taurine and the adenosine cyclic monophosphate levels in the heart]. Kardiologiia. Vol. 21. Num. 1. 1981. p. 85-89.

-Moreno, I.L.; Pastre, C.M.; Ferreira, C.; Abreu, L.C.; Valenti, V.E.; Vanderlei, L.C. Effects of an isotonic beverage on autonomic regulation during and after exercise. Journal of The International Society of Sports Nutrition. Vol. 10. Num. 1. 2013. p. 2. doi:10.1186/1550-2783-10-2.

-Nelson, M.T.; Biltz, G.R.; Dengel, D.R. Cardiovascular and ride time-to-exhaustion effects of an energy drink. Journal of The International Society of Sports Nutrition. Vol. 11. Num. 1. 2014. p. 2. doi: 10.1186/1550-2783-11-2.

-Novitsky, S.; Segal, K.R.; Chatr-Aryamontri, B.; Guvakov, D.; Katch, V.L. Validity of a new portable indirect calorimeter: the AeroSport TEEM 100. European Journal of Applied Physiology and Occupational Physiology. Vol. 70. Num. 5. 1995. p. 462-467. doi:10.1007/BF00618499.

-Pardini, R.; Matsudo, S.; Araújo, T.; Matsudo, V.; Andrade, E.; Braggion, G.; Andrade, D.; Oliveira, L.; Figueira Junior, A.; Raso, V. Validação do questionário internacional de nível de atividade física (IPAQ - versão 6): estudo piloto em adultos jovens brasileiros. Revista Brasileira Ciência e Movimento. Brasília. Vol. 9. Num. 3. 2001. p. 45-51.

-Pastre, C.M.; Bastos, F.N.; Netto, J.J.; Vanderlei, L.C.M.; Hoshi, R.A. Métodos de recuperação pós-exercício: Uma revisão sistemática. Revista Brasileira de Medicina do Esporte. Vol. 15. Num. 2. 2009. p. 138-144. doi:10.1590/S1517-86922009000200012.

-Pincomb, G.A.; Lovallo, W.R.; Passey, R.B.; Whitsett, T.L.; Silverstein, S.M.; Wilson, M.F. Effects of caffeine on vascular resistance, cardiac output and myocardial contractility in young men. The American Journal of Cardiology. Vol. 56. Num. 1. 1985. p. 119-122. doi:10.1016/0002-9149(85)90578-8.

-Porta, A.; Tobaldini, E.; Guzzetti, S.; Furlan, R.; Montano, N.; Gnecchi-Ruscone, T. Assessment of cardiac autonomic modulation during graded head-up tilt by symbolic analysis of heart rate variability. American Journal of Physiology Heart and Circulatory Physiology. Vol. 293. Num. 1. 2007. p.H702-H708. doi:10.1152/ajpheart.00006.2007.

-Porto, A.A.; Valenti, V.E.; Tonon do Amaral, J.A.; Benjamim, C.J.R.; Garner, D.M.; Ferreira, C. Energy Drink before Exercise Did Not Affect Autonomic Recovery Following Moderate Aerobic Exercise: A Crossover, Randomized and Controlled Trial. Journal of the American College of Nutrition. Vol. 40. Num. 3. 2021. p. 280-286. doi:10.1080/07315724.2020.1768175.

-Quintana, D.S. Statistical considerations for reporting and planning heart rate variability case-control studies. Psychophysiology. Vol. 54. Num. 3. 2017. p. 344-349. doi:10.1111/psyp.12798.

-Ribeiro, J.A.; Sebastião, A.M. Caffeine and adenosine. Journal of Alzheimer’s Disease. Vol. 20. Num. S1. 2010. p.S3-S15. doi:10.3233/JAD-2010-1379.

-Richman, J.S.; Moorman, J.R. Physiological time-series analysis using approximate entropy and sample entropy. American Journal of Physiology Heart and Circulatory Physiology. Vol. 278. Num. 6. 2000.p.H2039-2049. doi:10.1152/ajpheart.2000.278.6.H2039.

-Rincon Soler, A.I.; Silva, L.E.V.; Fazan, R.; Murta, L.O. The impact of artifact correction methods of RR series on heart rate variability parameters. Journal of Applied Physiology. Vol. 124. Num. 3. 2018. p. 646-652. doi:10.1152/japplphysiol.00927.2016.

-Romero, S.A.; Minson, C.T.; Halliwill, J.R. The cardiovascular system after exercise. Journal of Applied Physiology. Vol. 122. Num. 4. 2017. p. 925-932. doi:10.1152/japplphysiol.00802.2016.

-Silva, L.E.V.; Fazan, R.; Marin-Neto, J.A. PyBioS: A freeware computer software for analysis of cardiovascular signals. Computer Methods and Programs in Biomedicine. Vol. 197. Num. 105718. 2020. doi:10.1016/j.cmpb.2020.105718.

-Somers, K.R.; Svatikova, A. Cardiovascular and Autonomic Responses to Energy Drinks-Clinical Implications. Journal of Clinical Medicine. Vol. 9. Num. 2. 2020. p. 431. doi:10.3390/jcm9020431.

-Tank, J.; Heusser, K.; Diedrich, A.; Brychta, R.J.; Luft, F.C.; Jordan, J. Yohimbine attenuates baroreflex-mediated bradycardia in humans. Hypertension. Vol. 50. Num. 5. 2007. p. 899-903. doi:10.1161/HYPERTENSIONAHA.107.095984.

-Torbey, E.; Abi Rafeh, N.; Khoueiry, G.; Kowalski, M.; Bekheit, S. Ginseng: a potential cause of long QT. Journal of Electrocardiology. Vol. 44. Num. 3. 2011. p.357-358. doi:10.1016/j.jelectrocard.2010.08.007.

-Vanderlei, L.C.; Pastre, C.M.; Hoshi, R.A.; Carvalho, T.D.; Godoy, M.F. Basic notions of heart rate variability and its clinical applicability. Brazilian Journal of Cardiovascular Surgery. Vol. 24. Num. 2. 2009. p. 205-217. doi:10.1590/s0102-76382009000200018.

Publicado
2023-07-26
Como Citar
Porto, A. A., Gonzaga, L. A., Benjamim, C. J. R., Cardoso, V. F., Garner, D. M., Ferreira, C., Bueno Júnior, C. R., & Valenti, V. E. (2023). A ingestão de bebidas energéticas antes do exercício afeta a dinâmica não linear da recuperação da variabilidade da frequência cardíaca? Um ensaio randomizado, crossover, duplo-cego e controlado por placebo. RBNE - Revista Brasileira De Nutrição Esportiva, 17(104), 293-305. Obtido de https://www.rbne.com.br/index.php/rbne/article/view/2132
Secção
Artigos Científicos - Original